skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2328260

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While the complexity of laser powder bed fusion (LPBF) processes facilitates customized and metal-based functional parts to be built, existing process monitoring techniques have limitations. Therefore, the need for intricate process monitoring has grown. Non-uniform emission readings are correlated with overheating. Therefore, process monitoring of areas experiencing excess thermal emission during print to track potential overheating is needed. A process monitoring technique using deep neural network-long short-term memory (DNN-LSTM) deep learning (DL) models for emission tracking has been developed. The DNN component harnesses process parameters, while the LSTM harnesses the time-series emission structure on multiple sets of prints in parallel. Moreover, trust and interpretation of the opaque methodology are needed to make the process widely applicable. Existing explainable artificial intelligence (XAI) methods are inoperative with the model developed. We overcome this gap by developing an attribution-based XAI-enabled DNN-LSTM for predicting, explaining, and evaluating layer-wise emission prediction. Interpretation from attribution-based methods, namely, Shapley additive explanations, integrated gradient explanations, and local interpretable model-agnostic explanations, reveal an estimate of how each physics variable (process parameters, layer number, layer-wise average emission readings) impacts each future layer-wise average emission behavior as decided by the DL model. Finally, existing evaluation metrics of XAI are mostly domain-focused. We overcome this gap by establishing evaluation criteria appropriate for understanding the trust of the explanations in the context of thermal emission prediction for LPBF. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract Deep learning has impacted defect prediction in additive manufacturing (AM), which is important to ensure process stability and part quality. However, its success depends on extensive training, requiring large, homogeneous datasets—remaining a challenge for the AM industry, particularly for small- and medium-sized enterprises (SMEs). The unique and varied characteristics of AM parts, along with the limited resources of SMEs, hamper data collection, posing difficulties in the independent training of deep learning models. Addressing these concerns requires enabling knowledge sharing from the similarities in the physics of the AM process and defect formation mechanisms while carefully handling privacy concerns. Federated learning (FL) offers a solution to allow collaborative model training across multiple entities without sharing local data. This article introduces an FL framework to predict section-wise heat emission during laser powder bed fusion (LPBF), a vital process signature. It incorporates a customized long short-term memory (LSTM) model for each client, capturing the dynamic AM process's time-series properties without sharing sensitive information. Three advanced FL algorithms are integrated—federated averaging (FedAvg), FedProx, and FedAvgM—to aggregate model weights rather than raw datasets. Experiments demonstrate that the FL framework ensures convergence and maintains prediction performance comparable to individually trained models. This work demonstrates the potential of FL-enabled AM modeling and prediction where SMEs can improve their product quality without compromising data privacy. 
    more » « less
  3. Free, publicly-accessible full text available December 1, 2025