skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bridging Data Gaps: A Federated Learning Approach to Heat Emission Prediction in Laser Powder Bed Fusion
Abstract Deep learning has impacted defect prediction in additive manufacturing (AM), which is important to ensure process stability and part quality. However, its success depends on extensive training, requiring large, homogeneous datasets—remaining a challenge for the AM industry, particularly for small- and medium-sized enterprises (SMEs). The unique and varied characteristics of AM parts, along with the limited resources of SMEs, hamper data collection, posing difficulties in the independent training of deep learning models. Addressing these concerns requires enabling knowledge sharing from the similarities in the physics of the AM process and defect formation mechanisms while carefully handling privacy concerns. Federated learning (FL) offers a solution to allow collaborative model training across multiple entities without sharing local data. This article introduces an FL framework to predict section-wise heat emission during laser powder bed fusion (LPBF), a vital process signature. It incorporates a customized long short-term memory (LSTM) model for each client, capturing the dynamic AM process's time-series properties without sharing sensitive information. Three advanced FL algorithms are integrated—federated averaging (FedAvg), FedProx, and FedAvgM—to aggregate model weights rather than raw datasets. Experiments demonstrate that the FL framework ensures convergence and maintains prediction performance comparable to individually trained models. This work demonstrates the potential of FL-enabled AM modeling and prediction where SMEs can improve their product quality without compromising data privacy.  more » « less
Award ID(s):
2152908 2328260
PAR ID:
10645161
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
146
Issue:
10
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wang, Yan; Yang, Hui (Ed.)
    Abstract The scarcity of measured data for defect identification often challenges the development and certification of additive manufacturing processes. Knowledge transfer and sharing have become emerging solutions to small-data challenges in quality control to improve machine learning with limited data, but this strategy raises concerns regarding privacy protection. Existing zero-shot learning and federated learning methods are insufficient to represent, select, and mask data to share and control privacy loss quantification. This study integrates differential privacy in cybersecurity with federated learning to investigate sharing strategies of manufacturing defect ontology. The method first proposes using multilevel attributes masked by noise in defect ontology as the sharing data structure to characterize manufacturing defects. Information leaks due to the sharing of ontology branches and data are estimated by epsilon differential privacy (DP). Under federated learning, the proposed method optimizes sharing defect ontology and image data strategies to improve zero-shot defect classification given privacy budget limits. The proposed framework includes (1) developing a sharing strategy based on multilevel attributes in defect ontology with controllable privacy leaks, (2) optimizing joint decisions in differential privacy, zero-shot defect classification, and federated learning, and (3) developing a two-stage algorithm to solve the joint optimization, combining stochastic gradient descent search for classification models and an evolutionary algorithm for exploring data-sharing strategies. A case study on zero-shot learning of additive manufacturing defects demonstrated the effectiveness of the proposed method in data-sharing strategies, such as ontology sharing, defect classification, and cloud information use. 
    more » « less
  2. Federated Learning (FL) has emerged as an effective paradigm for distributed learning systems owing to its strong potential in exploiting underlying data characteristics while preserving data privacy. In cases of practical data heterogeneity among FL clients in many Internet-of-Things (IoT) applications over wireless networks, however, existing FL frameworks still face challenges in capturing the overall feature properties of local client data that often exhibit disparate distributions. One approach is to apply generative adversarial networks (GANs) in FL to address data heterogeneity by integrating GANs to regenerate anonymous training data without exposing original client data to possible eavesdropping. Despite some successes, existing GAN-based FL frameworks still incur high communication costs and elicit other privacy concerns, limiting their practical applications. To this end, this work proposes a novel FL framework that only applies partial GAN model sharing. This new PS-FedGAN framework effectively addresses heterogeneous data distributions across clients and strengthens privacy preservation at reduced communication costs, especially over wireless networks. Our analysis demonstrates the convergence and privacy benefits of the proposed PS-FEdGAN framework. Through experimental results based on several well-known benchmark datasets, our proposed PS-FedGAN demonstrates strong potential to tackle FL under heterogeneous (non-IID) client data distributions, while improving data privacy and lowering communication overhead. 
    more » « less
  3. As a promising distributed machine learning paradigm, Federated Learning (FL) has attracted increasing attention to deal with data silo problems without compromising user privacy. By adopting the classic one-to-multi training scheme (i.e., FedAvg), where the cloud server dispatches one single global model to multiple involved clients, conventional FL methods can achieve collaborative model training without data sharing. However, since only one global model cannot always accommodate all the incompatible convergence directions of local models, existing FL approaches greatly suffer from inferior classification accuracy. To address this issue, we present an efficient FL framework named FedCross, which uses a novel multi-to-multi FL training scheme based on our proposed multi-model cross-aggregation approach. Unlike traditional FL methods, in each round of FL training, FedCross uses multiple middleware models to conduct weighted fusion individually. Since the middleware models used by FedCross can quickly converge into the same flat valley in terms of loss landscapes, the generated global model can achieve a well-generalization. Experimental results on various well-known datasets show that, compared with state-of-the-art FL methods, Fed Cross can significantly improve FL accuracy within both IID and non-IID scenarios without causing additional communication overhead. 
    more » « less
  4. Federated learning (FL) enables multiple participants to train a global machine learning model without sharing their private training data. Peer-to-peer (P2P) FL advances existing centralized FL paradigms by eliminating the server that aggregates local models from participants and then updates the global model. However, P2P FL is vulnerable to (i) honest-but-curious participants whose objective is to infer private training data of other participants, and (ii) Byzantine participants who can transmit arbitrarily manipulated local models to corrupt the learning process. P2P FL schemes that simultaneously guarantee Byzantine resilience and preserve privacy have been less studied. In this paper, we develop Brave, a protocol that ensures Byzantine Resilience And priVacy-prEserving property for P2P FL in the presence of both types of adversaries. We show that Brave preserves privacy by establishing that any honest-but-curious adversary cannot infer other participants’ private data by observing their models. We further prove that Brave is Byzantine-resilient, which guarantees that all benign participants converge to an identical model that deviates from a global model trained without Byzantine adversaries by a bounded distance. We evaluate Brave against three state-of-the-art adversaries on a P2P FL for image classification tasks on benchmark datasets CIFAR10 and MNIST. Our results show that global models learned with Brave in the presence of adversaries achieve comparable classification accuracy to global models trained in the absence of any adversary. 
    more » « less
  5. Recent advancements in neuroimaging have led to greater data sharing among the scientific community. However, institutions frequently maintain control over their data, citing concerns related to research culture, privacy, and accountability. This creates a demand for innovative tools capable of analyzing amalgamated datasets without the need to transfer actual data between entities. To address this challenge, we propose a decentralized sparse federated learning (FL) strategy. This approach emphasizes local training of sparse models to facilitate efficient communication within such frameworks. By capitalizing on model sparsity and selectively sharing parameters between client sites during the training phase, our method significantly lowers communication overheads. This advantage becomes increasingly pronounced when dealing with larger models and accommodating the diverse resource capabilities of various sites. We demonstrate the effectiveness of our approach through the application to the Adolescent Brain Cognitive Development (ABCD) dataset. 
    more » « less