Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract First characterization of year‐round Na layers from 75 to 150 km is enabled with 7 years (2011–2017) of high‐detection‐sensitivity lidar observations over Boulder (40.13°N, 105.24°W). Clear annual and semiannual oscillations (AO and SAO) are revealed in the nightly‐mean thermosphere‐ionosphere Na (TINa) (∼105–150 km) number density and volume mixing ratio with the summer maximum but spring equinox (March/April) minimum. Such stark contrast to the summer minimum in the main Na layers (∼75–105 km) supports the theory of TINa formed via TINa+ion neutralization (). The SAO/AO amplitude ratio profiles (75–150 km) exhibit significant changes (∼0.06–2), linking TINa SAO to thermospheric density SAO and the minimal wave/eddy transport around midlatitude equinoxes which hinders TINa+ion production and upward transport via reduced diffusion of the main Na layer. Stronger TINa in autumn than in spring equinox is explained by the maximal (minimal) meteoric influx occurring in September (April).more » « lessFree, publicly-accessible full text available September 9, 2026
-
Abstract We have discovered that the peak phase time of predawn thermosphere‐ionosphere Na (TINa) layers (∼110–150 km altitude) undergoes clear annual variations with the earliest occurrence in summer and latest in winter over Boulder (40.13°N, 105.24°W), which are closely correlated to annual phase variations of sunrise and tidal winds. Such discoveries were enabled by the first characterization of 12 monthly composites of TINa layers from January through December using 7 years of lidar observations (2011–2017). Despite their tenuous densities, the predawn TINa layers have nearly 100% occurrence rate (160 out of 164 nights of observations). Monthly composites show downward‐phase‐progression TINa descending at similar phase speeds as Climatological Tidal Model of the Thermosphere tidal winds. These TINa layers occur in ion convergence but neutral divergence regions, modeled using tidal winds. These results support the formation mechanism (neutralization of converged TINa+forming TINa) proposed previously and suggest that migrating tidal winds experience annual phase variations.more » « less
-
We review the mechanism of multi-step vertical coupling (MSVC) via secondary and higher-order gravity waves (GWs), and its relevance for observed GW perturbations and the circulation in the upper mesosphere and thermosphere. Since the momentum deposition following the breaking or dissipation of a GW packet is localized in space and time, it leads to an imbalance in the ambient flow which in turn results in the generation of secondary or higher-order GWs. This local “body force” (LBF) mechanism is essential for MSVC. We argue that small-scale secondary GWs resulting directly from GW instability form a macro-turbulent cascade that leads to the LBF. We present a simple scale analysis supporting this interpretation with respect to observed GW spectra. Several examples of MSVC are reviewed. These include 1) an explanation of the observed persistent GWs and prevailing eastward winds in the winter mesopause region at middle to high latitudes via secondary GWs, 2) evidence that many of the daytime traveling ionospheric disturbances in the F region during winter and low geomagnetic activity are driven by higher-order GWs from MSVC, 3) the dependence of MSVC during wintertime on the strength of the polar vortex, and 4) the secondary GW disturbances in the thermosphere and ionospheric that were triggered by the Tonga volcanic eruption on January 15, 2022. Furthermore, we describe the GW-resolving whole-atmosphere model that was primarily used in corresponding studies of MSVC, and we discuss some open questions.more » « lessFree, publicly-accessible full text available December 30, 2025
-
The Earth’s upper atmosphere separates interplanetary space from the lower atmosphere and biosphere, absorbs harmful solar radiation, dissipates cosmic dust and energetic particles, and regulates gaseous escape and atmospheric waves, therefore protecting living things on Earth. It is difficult to observe the upper atmosphere, posing challenges to studying these processes. Advancement of lidar technologies and observations over the last decades have revolutionized the research field, significantly extended the profiling altitude ranges and capabilities, and created new potential for exploring space-atmosphere interactions. This article summarizes the principles, technologies, and major discoveries of lidar studies of the upper atmosphere and near-space environment.more » « lessFree, publicly-accessible full text available December 30, 2025
An official website of the United States government
