skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2330195

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The proliferation of distributed energy resources has heightened the interactions between transmission and distribution (T&D) systems, necessitating novel analyses for the reliable operation and planning of interconnected T&D networks. A critical gap is an analysis approach that identifies and localizes the weak spots in the combined T&D networks, providing valuable information to system planners and operators. The research goal is to efficiently model and simulate infeasible (i.e. unsolvable in general settings) combined positive sequence transmission and three-phase distribution networks with a unified solution algorithm. We model the combined T&D network with the equivalent circuit formulation. To solve the overall T&D network, we build a Gauss-Jacobi-Newton (GJN) based distributed primal dual interior point optimization algorithm capable of isolating weak nodes. We validate the approach on large combined T&D networks with 70k+ T and 15k+ D nodes and demonstrate performance improvement over the alternating direction method of multipliers (ADMM) method. 
    more » « less