Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals.more » « less
-
Abstract Iron-based 1111-type superconductors display high critical temperatures and relatively high critical current densitiesJc. The typical approach to increasingJcis to introduce defects to control dissipative vortex motion. However, when optimized, this approach is theoretically predicted to be limited to achieving a maximumJcof only ∼30% of the depairing current densityJd, which depends on the coherence length and the penetration depth. Here we dramatically boostJcin SmFeAsO1–xHxfilms using a thermodynamic approach aimed at increasingJdand incorporating vortex pinning centres. Specifically, we reduce the penetration depth, coherence length and critical field anisotropy by increasing the carrier density through high electron doping using H substitution. Remarkably, the quadrupledJdreaches 415 MA cm–2, a value comparable to cuprates. Finally, by introducing defects using proton irradiation, we obtain highJcvalues in fields up to 25 T. We apply this method to other iron-based superconductors and achieve a similar enhancement of current densities.more » « less
-
This review paper delves into the concept of critical current density in high-temperature superconductors (HTS) across macroscopic, mesoscopic, and microscopic perspectives. Through this exploration, a comprehensive range of connections is unveiled aiming to foster advancements in the physics, materials science, and the engineering of applied superconductors. Beginning with the macroscopic interpretation of as a central material law, the review traces its development from C.P. Bean’s foundational work to modern extensions. Mesoscopic challenges in understanding vortex dynamics and their coherence with thermodynamic anisotropy regimes are addressed, underscoring the importance of understanding the limitations and corrections implicit in the macroscopic measurement of , linked with mesoscopic phenomena such as irradiation effects, defect manipulation, and vortex interactions. The transition to supercritical current densities is also discussed, detailing the superconductor behavior beyond critical thresholds with a focus on flux-flow instability regimes relevant to fault current limiters and fusion energy magnets. Enhancing through tailored material microstructures, engineered pinning centers, grain boundary manipulation, and controlled doping is explored, along with radiation techniques and their impact on large-scale energy systems. Emphasizing the critical role of , this review focuses on its physical optimization and engineering manipulation, highlighting its significance across diverse sectors.more » « lessFree, publicly-accessible full text available May 26, 2026
-
Disordered iron germanium (FeGe) has recently garnered interest as a testbed for a variety of magnetic phenomena as well as for use in magnetic memory and logic applications. This is partially owing to its ability to host skyrmions and antiskyrmions—nanoscale whirlpools of magnetic moments that could serve as information carriers in spintronic devices. In particular, a tunable skyrmion–antiskyrmion system may be created through precise control of the defect landscape in B20-phase FeGe, motivating the development of methods to systematically tune disorder in this material and understand the ensuing structural properties. To this end, we investigate a route for modifying magnetic properties in FeGe. In particular, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ ions, which creates a dispersion of amorphized regions that may preferentially host antiskyrmions at densities controlled by the irradiation fluence. To further tune the disorder landscape, we conduct a systematic electron diffraction study with in situ annealing, demonstrating the ability to recrystallize controllable fractions of the material at temperatures ranging from ∼150 to 250 °C. Finally, we describe the crystallization kinetics using the Johnson–Mehl–Avrami–Kolmogorov model, finding that the growth of crystalline grains is consistent with diffusion-controlled one-to-two dimensional growth with a decreasing nucleation rate.more » « less
An official website of the United States government
