Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Antimony chalcogenides (Sb2X3, where X = S, Se, or SxSe1−x) are promising materials for thin‐film solar cells due to their tunable bandgaps (1.1–1.8 eV), high absorption coefficients (>105cm−1), nontoxicity, and earth‐abundant composition. Recent advancements have achieved power conversion efficiencies (PCEs) exceeding 10%, with a record of 10.81% for Sb2(S, Se)3cells. However, interface‐related issues, such as recombination losses and open‐circuit voltage (VOC) deficits, limit performance. Interface engineering strategies have significantly improved device efficiency and stability, including buffer layer optimization, defect passivation, surface treatments, post‐processing, and doping. This review summarizes the latest developments in these areas, discusses ongoing challenges, and proposes future research directions to enhance the performance of antimony chalcogenide solar cells.more » « lessFree, publicly-accessible full text available August 1, 2026
-
The tandem solar cell presents a potential solution to surpass the Shockley–Queisser limit observed in single-junction solar cells. However, creating a tandem device that is both cost-effective and highly efficient poses a significant challenge. In this study, we present proof of concept for a four-terminal (4T) tandem solar cell utilizing a wide bandgap (1.6–1.8 eV) perovskite top cell and a narrow bandgap (1.2 eV) antimony selenide (Sb2Se3) bottom cell. Using a one-dimensional (1D) solar cell capacitance simulator (SCAPS), our calculations indicate the feasibility of this architecture, projecting a simulated device performance of 23% for the perovskite/Sb2Se3 4T tandem device. To validate this, we fabricated two wide bandgap semitransparent perovskite cells with bandgaps of 1.6 eV and 1.77 eV, respectively. These were then mechanically stacked with a narrow bandgap antimony selenide (1.2 eV) to create a tandem structure, resulting in experimental efficiencies exceeding 15%. The obtained results demonstrate promising device performance, showcasing the potential of combining perovskite top cells with the emerging, earth-abundant antimony selenide thin film solar technology to enhance overall device efficiency.more » « less
-
Cadmium telluride (CdTe) is a highly promising material for photovoltaics (PV) and photodetectors due to its light‐absorbing properties. However, efficient design and use of flexible devices require a deep understanding of its atomic‐level deformation mechanism. Herein, uniaxial compression deformation of CdTe monocrystalline with varying crystal orientations is investigated using molecular dynamics (MD) with a newly developed machine‐learning force field (ML‐FF), alongside in‐situ micropillar compression experiments. The findings reveal that CdTe bulk deformation is dominated by reversible martensitic phase transformation, whereas CdTe pillar deformation is primarily driven by dislocation nucleation and movement. CdTe monocrystals possess exceptional super‐recoverable deformation along the <100> orientation due to hyper‐elastic processes induced by martensitic transformation. This discovery not only sheds light on the peculiarities observed in micropillar experimental measurements, but also provides pivotal insights into the fundamental deformation behaviors of CdTe and similar II–VI compounds under various stress conditions. These insights are crucial for the innovative design and enhanced functionality of future flexible electronic devices.more » « less
An official website of the United States government
