The rapid rise in single-junction perovskite solar cell (PSC) efficiencies, tunable bandgap and low-cost solution processability make PSCs an attractive candidate for tandems with Si bottom cells. However, the challenge is to fabricate a high-performance semitransparent perovskite top cell in combination with an appropriate silicon bottom cell with high response to long wavelength photons that are filtered through the perovskite top cell. Currently, semitransparent perovskite cells show much lower performance compared to their opaque counterparts while high-performance silicon bottom cells, such as heterojunction with intrinsic thin layer (HIT) and interdigitated back contact (IBC), maybe too expensive to meet the cost and efficiency targets for commercial viability. Here, we demonstrate a 26.7% perovskite-Si four terminal (4T) tandem cell comprising a highly efficient 17.8% CsFAMAPbIBr semitransparent, 1.63-eV bandgap perovskite top cell and a ≥ 22% efficiency n-type Si bottom cell fabricated with a conventional boron diffused emitter on the front and carrier selective n+ poly-Si/SiOx passivated contact on the rear. This is among the highest efficiency perovskite/Si 4T tandems published to-date and represents the first demonstration of the use of the high temperature-resistant single side n-TOPCon Si cell in a 4T configuration. 
                        more » 
                        « less   
                    
                            
                            Exploring the Feasibility and Performance of Perovskite/Antimony Selenide Four-Terminal Tandem Solar Cells
                        
                    
    
            The tandem solar cell presents a potential solution to surpass the Shockley–Queisser limit observed in single-junction solar cells. However, creating a tandem device that is both cost-effective and highly efficient poses a significant challenge. In this study, we present proof of concept for a four-terminal (4T) tandem solar cell utilizing a wide bandgap (1.6–1.8 eV) perovskite top cell and a narrow bandgap (1.2 eV) antimony selenide (Sb2Se3) bottom cell. Using a one-dimensional (1D) solar cell capacitance simulator (SCAPS), our calculations indicate the feasibility of this architecture, projecting a simulated device performance of 23% for the perovskite/Sb2Se3 4T tandem device. To validate this, we fabricated two wide bandgap semitransparent perovskite cells with bandgaps of 1.6 eV and 1.77 eV, respectively. These were then mechanically stacked with a narrow bandgap antimony selenide (1.2 eV) to create a tandem structure, resulting in experimental efficiencies exceeding 15%. The obtained results demonstrate promising device performance, showcasing the potential of combining perovskite top cells with the emerging, earth-abundant antimony selenide thin film solar technology to enhance overall device efficiency. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10509822
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Solar
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2673-9941
- Page Range / eLocation ID:
- 222 to 231
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract: Monolithic integrated thin film tandem solar cells consisting of a high bandgap perovskite top cell and a low bandgap thin film bottom cell are expected to reach higher power conversion efficiencies (PCEs) with lower manufacturing cost and environmental impacts than the market-dominant crystalline silicon photovoltaics. There have been several demonstrations of 4-terminal and 2-terminal perovskite tandem devices with CuInGaSe 2 (CIGS) or CuInSe 2 (CIS) and, similar to the other tandem structures, the optimization of this device relies on optimal choice for the perovskite bandgap and thickness. Therefore, further advancement will be enabled by tuning the perovskite absorber to maximize the photocurrent limited by the current match condition. Here, we systematically study the optical absorption and transmission of perovskite thin films with varying absorber band gap. Based on these results, we model the photocurrent generations in both perovskite and CIS subcells and estimate the performances of projected tandem devices by considering the ideally functioning perovskite and CIS device. Our results show that for perovskite layers with 500 nm thickness the optimal bandgap is around 1.6 eV. With these configurations, PCEs above 20% could be achieved by monolithically integrated perovskite/CIS tandem solar cells. Also by modelling the absorption at every layer we calculate the quantum efficiency at each subcell in addition to tracking optical losses.more » « less
- 
            Antimony selenide (Sb2Se3) is a promising light absorber material for solar cells because of its superior photovoltaic properties. However, the current performance of the Sb2Se3 solar cell is much lower than its theoretical value (∼32%) due to its low open-circuit voltage (VOC). In this paper, we have demonstrated inorganic vanadium oxides (VOx) as a hole transport layer (HTL) for Sb2Se3 solar cells to enhance efficiency through the VOC improvement. Here, a solution-processed VOx through the decomposition of the triisopropoxyvanadium (V) oxide is deposited on the Sb2Se3 absorber layer prepared by close-spaced sublimation (CSS). With VOx HTL, the built-in voltage (Vbi) is significantly increased, leading to improved VOC for the Sb2Se3 solar cell devices. As a result, the efficiency of the device increases from an average efficiency of 5.5% to 6.3% with the VOx.more » « less
- 
            The antimony selenide (Sb2Se3) thin film solar cells technology become promising due to its excellent anisotropic charge transport and brilliant light absorption capability. Especially, the device performance heavily relies on the vertically oriented Sb2Se3 grain to promote photoexcited carrier transport. However, crystalline orientation control has been a major issue in Sb2Se3 thin film solar cells. In this work, a new strategy has been developed to tailor the crystal growth of Sb2Se3 ribbons perpendicular to the substrate by using the structural heterostructured CdS buffer layer. The heterostructured CdS buffer layer was formed by a dual layer of CdS nanorods and nanoparticles. The hexagonal CdS nanorods passivated by a thin cubic CdS nanoparticle layer can promote [211] and [221] directional growth of Sb2Se3 ribbons using a close space sublimation approach. The improved buffer/absorber interface, reduced interface defects, and recombination loss contribute to the improved device efficiency of 7.16%. This new structural heterostructured CdS buffer layer can regulate Sb2Se3 nanoribbons crystal growth and pave the way to further improve the low-dimensional chalcogenide thin film solar cell efficiency.more » « less
- 
            Antimony selenide (Sb2Se3) is a promising material for solar energy conversion due to its low toxicity, high stability, and excellent light absorption capabilities. However, Sb2Se3 films produced via physical vapor deposition often exhibit Se-deficient surfaces, which result in a high carrier recombination and poor device performance. The conventional selenization process was used to address selenium loss in Sb2Se3 solar cells with a substrate configuration. However, this traditional selenization method is not suitable for superstrated Sb2Se3 devices with the window layer buried underneath the Sb2Se3 light absorber layer, as it can lead to significant diffusion of the window layer material into Sb2Se3 and damage the device. In this work, we have demonstrated a rapid thermal selenization (RTS) technique that can effectively selenize the Sb2Se3 absorber layer while preventing the S diffusion from the buried CdS window layer into the Sb2Se3 absorber layer. The RTS technique significantly reduces carrier recombination loss and carrier transport resistance and can achieve the highest efficiency of 8.25%. Overall, the RTS method presents a promising approach for enhancing low-dimensional chalcogenide thin films for emerging superstrate chalcogenide solar cell applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    