skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2333370

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A crucial factor influencing the mass balance of the West Antarctic Ice Sheet is the Amundsen Sea Low (ASL), a climatological low‐pressure region situated off the West Antarctic coast. However, albeit the deepening of the ASL since the 1950s has been attributed to anthropogenic forcing, the multi‐decadal variability of the ASL remains poorly understood, because of a lack of long observations. Here, we apply a newly developed data assimilation method to reconstruct the ASL over 1870–2000. We study the forced and internal variability of the ASL using our new reconstruction in concert with existing large ensembles of climate model simulations. Our findings robustly demonstrate that an atmospheric teleconnection originating from the tropical Indo‐Pacific is the main driver of ASL variability at the multi‐decadal time scale, with resemblance to the Interdecadal Pacific Oscillation. Since the mid‐20th century, anthropogenic forcing has emerged as a dominant contributor to the strengthening of the ASL. 
    more » « less
  2. Free, publicly-accessible full text available September 1, 2026
  3. Abstract. The recent changes and record lows in Antarctic sea ice extent illustrate the need for longer estimates beyond the short satellite observation period commencing around 1979. However, Antarctic sea ice extent reconstructions since 1900 based on paleo-records and those generated based on instrumental observations from the Southern Hemisphere midlatitudes are markedly different, especially prior to 1979. Here, these reconstructions are examined with the goal of understanding the relative strengths and limitations of each reconstruction better so that researchers using the various datasets can interpret them appropriately. Overall, it is found that the different spatial and temporal resolutions of each dataset play a secondary role to the inherent connections each reconstruction has with its implied atmospheric circulation. Five Southern Hemisphere pressure reconstructions spanning the 20th century are thus examined further. There are different variabilities and trends poleward of 60∘ S between proxy-based and station-based 20th century pressure reconstructions, which are connected to the disagreement between the Antarctic sea ice extent reconstructions examined here. Importantly, reconstructions based on only coral records provide the best agreement between the early pressure reconstructions, suggesting that a contributing role of tropical variability is present in the station-based pressure (and therefore sea ice) reconstructions. In contrast, ice-core-only reconstructions provide a local, high-latitude constraint that creates differences between the proxy-based and station-based reconstructions near Antarctica. Our results reveal the greatest consistencies and inconsistencies in available datasets and highlight the need to better understand the relative roles of the tropics versus high latitudes in historical sea ice variability around Antarctica. 
    more » « less