skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2333469

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study investigates how high school-aged youth engage in algorithm auditing to identify and understand biases in artificial intelligence and machine learning (AI/ML) tools they encounter daily. With AI/ML technologies being increasingly integrated into young people’s lives, there is an urgent need to equip teenagers with AI literacies that build both technical knowledge and awareness of social impacts. Algorithm audits (also called AI audits) have traditionally been employed by experts to assess potential harmful biases, but recent research suggests that non-expert users can also participate productively in auditing. We conducted a two-week participatory design workshop with 14 teenagers (ages 14–15), where they audited the generative AI model behind TikTok’s Effect House, a tool for creating interactive TikTok filters. We present a case study describing how teenagers approached the audit, from deciding what to audit to analyzing data using diverse strategies and communicating their results. Our findings show that participants were engaged and creative throughout the activities, independently raising and exploring new considerations, such as age-related biases, that are uncommon in professional audits. We drew on our expertise in algorithm auditing to triangulate their findings as a way to examine if the workshop supported participants to reach coherent conclusions in their audit. Although the resulting number of changes in race, gender, and age representation uncovered by the teens were slightly different from ours, we reached similar conclusions. This study highlights the potential for auditing to inspire learning activities to foster AI literacies, empower teenagers to critically examine AI systems, and contribute fresh perspectives to the study of algorithmic harms. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. This study investigates how high school-aged youth engage in algorithm auditing to identify and understand biases in artificial intelligence and machine learning (AI/ML) tools they encounter daily. With AI/ML technologies being increasingly integrated into young people’s lives, there is an urgent need to equip teenagers with AI literacies that build both technical knowledge and awareness of social impacts. Algorithm audits (also called AI audits) have traditionally been employed by experts to assess potential harmful biases, but recent research suggests that non-expert users can also participate productively in auditing. We conducted a two-week participatory design workshop with 14 teenagers (ages 14–15), where they audited the generative AI model behind TikTok’s Effect House, a tool for creating interactive TikTok filters. We present a case study describing how teenagers approached the audit, from deciding what to audit to analyzing data using diverse strategies and communicating their results. Our findings show that participants were engaged and creative throughout the activities, independently raising and exploring new considerations, such as age-related biases, that are uncommon in professional audits. We drew on our expertise in algorithm auditing to triangulate their findings as a way to examine if the workshop supported participants to reach coherent conclusions in their audit. Although the resulting number of changes in race, gender, and age representation uncovered by the teens were slightly different from ours, we reached similar conclusions. This study highlights the potential for auditing to inspire learning activities to foster AI literacies, empower teenagers to critically examine AI systems, and contribute fresh perspectives to the study of algorithmic harms. 
    more » « less
    Free, publicly-accessible full text available August 20, 2026
  3. Seitamaa_Hakkarainen, P; Kangas, K (Ed.)
    Today’s youth have extensive experience interacting with artificial intelligence and machine learning applications on popular social media platforms, putting youth in a unique position to examine, evaluate, and even challenge these applications. Algorithm auditing is a promising candidate for connecting youth’s everyday practices in using AI applications with more formal scientific literacies (i.e., syncretic designs). In this paper, we analyze high school youth participants’ everyday algorithm auditing practices when interacting with generative AI filters on TikTok, revealing thorough and extensive examinations, with youth rapidly testing filters with sophisticated camera variations and facial manipulations to identify filter limitations. In the discussion, we address how these findings can provide a foundation for developing designs that bring together everyday and more formal algorithm auditing. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  4. Hoadley, C; Wang, C (Ed.)
    While there is widespread interest in supporting young people to critically evaluate machine learning-powered systems, there is little research on how we can support them in inquiring about how these systems work and what their limitations and implications may be. Outside of K-12 education, an effective strategy in evaluating black-boxed systems is algorithm auditing—a method for understanding algorithmic systems’ opaque inner workings and external impacts from the outside in. In this paper, we review how expert researchers conduct algorithm audits and how end users engage in auditing practices to propose five steps that, when incorporated into learning activities, can support young people in auditing algorithms. We present a case study of a team of teenagers engaging with each step during an out-of-school workshop in which they audited peer-designed generative AI TikTok filters. We discuss the kind of scaffolds we provided to support youth in algorithm auditing and directions and challenges for integrating algorithm auditing into classroom activities. This paper contributes: (a) a conceptualization of five steps to scaffold algorithm auditing learning activities, and (b) examples of how youth engaged with each step during our pilot study. 
    more » « less
  5. Most attention in K-12 artificial intelligence and machine learning (AI/ML) education has been given to having youths train models, with much less attention to the equally important testing of models when creating machine learning applications. Testing ML applications allows for the evaluation of models against predictions and can help creators of applications identify and address failure and edge cases that could negatively impact user experiences. We investigate how testing each other's projects supported youths to take perspective about functionality, performance, and potential issues in their own projects. We analyzed testing worksheets, audio and video recordings collected during a two week workshop in which 11 high school youths created physical computing projects that included (audio, pose, and image) ML classifiers. We found that through peer-testing youths reflected on the size of their training datasets, the diversity of their training data, the design of their classes and the contexts in which they produced training data. We discuss future directions for research on peer-testing in AI/ML education and current limitations for these kinds of activities. 
    more » « less