skip to main content


Search for: All records

Award ID contains: 2333887

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. Approximating quantiles and distributions over streaming data has been studied for roughly two decades now. Recently, Karnin, Lang, and Liberty proposed the first asymptotically optimal algorithm for doing so. This manuscript complements their theoretical result by providing a practical variants of their algorithm with improved constants. For a given sketch size, our techniques provably reduce the upper bound on the sketch error by a factor of two. These improvements are verified experimentally. Our modified quantile sketch improves the latency as well by reducing the worst-case update time from O(1ε) down to O(log1ε). 
    more » « less
  3. Packet drops caused by congestion are a fundamental problem in network operation. Yet, it is difficult to detect where drops are happening, let alone which flows are most affected. Detecting the small-timescale drops caused by short bursts of traffic is even more challenging, and traditional monitoring techniques can easily miss them. To uncover packet drops as they occur inside a switch, the analysis must be real-time, fine-grained, and efficient. However, modern switches have distributed packet-processing pipelines that see either the arriving or departing traffic, but not the packet drops. Plus, they do not have enough memory to store per-flow state. Our MIDST system addresses these challenges through a distributed compact data structure with lightweight coordination between ingress and egress pipelines. MIDST identifies the flows experiencing loss, as well as the bursty flows responsible, across different burst durations. Our evaluation with real-world traces and TCP connections shows that MIDST uses little memory (e.g., 320KB) while providing high accuracy (95% to 98%) under varying loss rates and burst durations. We evaluate a low-rate DDoS attack and demonstrate the potential use of our measurement results for attack detection and mitigation. 
    more » « less