skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2334196

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. The increasing adoption of smart home devices has raised significant concerns regarding privacy, security, and vulnerability to cyber threats. This study addresses these challenges by presenting a federated learning framework enhanced with blockchain technology to detect intrusions in smart home environments. The proposed approach combines knowledge distillation and transfer learning to support heterogeneous IoT devices with varying computational capacities, ensuring efficient local training without compromising privacy. Blockchain technology is integrated to provide decentralized, tamper-resistant access control through Role-Based Access Control (RBAC), allowing only authenticated devices to participate in the federated learning process. This combination ensures data confidentiality, system integrity, and trust among devices. This framework’s performance was evaluated using the N-BaIoT dataset, showcasing its ability to detect anomalies caused by botnets such as Mirai and BASHLITE across diverse IoT devices. Results demonstrate significant improvements in intrusion detection accuracy, particularly for resource-constrained devices, while maintaining privacy and adaptability in dynamic smart home environments. These findings highlight the potential of this blockchain-enhanced federated learning system to offer a scalable, robust, and privacy-preserving solution for securing smart homes against evolving threats. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026