skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2334624

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available December 7, 2025
  4. Semantic segmentation methods are typically designed for RGB color images, which are interpolated from raw Bayer images. While RGB images provide abundant color information and are easily understood by humans, they also add extra storage and computational burden for neural networks. On the other hand, raw Bayer images preserve primitive color information with a single channel, potentially increasing segmentation accuracy while significantly decreasing storage and computation time. In this paper, we propose RawSeg-Net to segment single-channel raw Bayer images directly. Different from RGB images that already contain neighboring context information during ISP color interpolation, each pixel in raw Bayer images does not contain any context clues. Based on Bayer pattern properties, RawSeg-Net assigns dynamic attention on Bayer images' spectral frequency and spatial locations to mitigate classification confusion, and proposes a re-sampling strategy to capture both global and local contextual information. 
    more » « less
  5. Major semantic segmentation approaches are designed for RGB color images, which is interpolated from raw Bayer images. The use of RGB images on the one hand provides abundant scene color information. On the other hand, RGB images are easily observable for human users to understand the scene. The RGB color continuity also facilitates researchers to design segmentation algorithms, which becomes unnecessary in end-to-end learning. More importantly, the use of 3 channels adds extra storage and computation burden for neural networks. In contrast, the raw Bayer images can reserve the primitive color information in the largest extent with just a single channel. The compact design of Bayer pattern not only potentially increases a higher segmentation accuracy because of avoiding interpolation, but also significantly decreases the storage requirement and computation time in comparison with standard R, G, B images. In this paper, we propose BayerSeg-Net to segment single channel raw Bayer image directly. Different from RGB color images that already contain neighboring context information during ISP color interpolation, each pixel in raw Bayer images does not contain any context clues. Based on Bayer pattern properties, BayerSeg-Net assigns dynamic attention on Bayer images' spectral frequency and spatial locations to mitigate classification confusion, and proposes a re-sampling strategy to capture both global and local contextual information. We demonstrate the usability of raw Bayer images in segmentation tasks and the efficiency of BayerSeg-Net on multiple datasets. 
    more » « less
  6. Bayer pattern is a widely used Color Filter Array (CFA) for digital image sensors, efficiently capturing different light wavelengths on different pixels without the need for a costly ISP pipeline. The resulting single-channel raw Bayer images offer benefits such as spectral wavelength sensitivity and low time latency. However, object detection based on Bayer images has been underexplored due to challenges in human observation and algorithm design caused by the discontinuous color channels in adjacent pixels. To address this issue, we propose the BayerDetect network, an end-to-end deep object detection framework that aims to achieve fast, accurate, and memory-efficient object detection. Unlike RGB color images, where each pixel encodes spectral context from adjacent pixels during ISP color interpolation, raw Bayer images lack spectral context. To enhance the spectral context, the BayerDetect network introduces a spectral frequency attention block, transforming the raw Bayer image pattern to the frequency domain. In object detection, clear object boundaries are essential for accurate bounding box predictions. To handle the challenges posed by alternating spectral channels and mitigate the influence of discontinuous boundaries, the BayerDetect network incorporates a spatial attention scheme that utilizes deformable convolutional kernels in multiple scales to explore spatial context effectively. The extracted convolutional features are then passed through a sparse set of proposal boxes for detection and classification. We conducted experiments on both public and self-collected raw Bayer images, and the results demonstrate the superb performance of the BayerDetect network in object detection tasks. 
    more » « less