skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2339174

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large language models (LLMs) have demonstrated remarkable capabilities in document processing, data analysis, and code generation. However, the generation of spatial information in a structured and unified format remains a challenge, limiting their integration into production environments. In this paper, we introduce a benchmark for generating structured and formatted spatial outputs from LLMs with a focus on enhancing spatial information generation. We present a multi-step workflow designed to improve the accuracy and efficiency of spatial data generation. The steps include generating spatial data (e.g., GeoJSON) and implementing a novel method for indexing R-tree structures. In addition, we explore and compare a series of methods commonly used by developers and researchers to enable LLMs to produce structured outputs, including fine-tuning, prompt engineering, and retrieval-augmented generation (RAG). We propose new metrics and datasets along with a new method for evaluating the quality and consistency of these outputs. Our findings offer valuable insights into the strengths and limitations of each approach, guiding practitioners in selecting the most suitable method for their specific use cases. This work advances the field of LLM-based structured spatial data output generation and supports the seamless integration of LLMs into real-world applications. 
    more » « less
  2. Mining spatiotemporal mobility patterns is crucial for optimizing urban planning, enhancing transportation systems, and improving public safety by providing useful insights into human movement and behavior over space and time. As an unsupervised learning technique, time series clustering has gained considerable attention due to its efficiency. However, the existing literature has often overlooked the inherent characteristics of mobility data, including high-dimensionality, noise, outliers, and time distortions. This oversight can lead to potentially large computational costs and inaccurate patterns. To address these challenges, this paper proposes a novel neural network-based method integrating temporal autoencoder and dynamic time warping-based K-means clustering algorithm to mutually promote each other for mining spatiotemporal mobility patterns. Comparative results showed that our proposed method outperformed several time series clustering techniques in accurately identifying mobility patterns on both synthetic and real-world data, which provides a reliable foundation for data-driven decision-making. Furthermore, we applied the method to monthly county-level mobility data during the COVID-19 pandemic in the U.S., revealing significant differences in mobility changes between rural and urban areas, as well as the impact of public response and health considerations on mobility patterns. 
    more » « less