skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2339794

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we investigate stochastic approximation (SA) with Markovian data and nonlinear updates under constant stepsize. Existing work has primarily focused on either i.i.d. data or linear update rules. We take a new perspective and carefully examine the simultaneous presence of Markovian dependency of data and nonlinear update rules, delineating how the interplay between these two structures leads to complications that are not captured by prior techniques. By leveraging the smoothness and recurrence properties of the SA updates, we develop a fine-grained analysis of the correlation between the SA iterates and Markovian data. This enables us to overcome the obstacles in existing analysis and establish for the first time the weak convergence of the joint process. Furthermore, we present a precise characterization of the asymptotic bias of the SA iterates. As a by-product of our analysis, we derive finite-time bounds on higher moment and present non-asymptotic geometric convergence rates for the iterates, along with a Central Limit Theorem. 
    more » « less
    Free, publicly-accessible full text available September 25, 2025
  2. Stochastic Approximation (SA) is a widely used algorithmic approach in various fields, including optimization and reinforcement learning (RL). Among RL algorithms, Q-learning is particularly popular due to its empirical success. In this paper, we study asynchronous Q-learning with constant stepsize, which is commonly used in practice for its fast convergence. By connecting the constant stepsize Q-learning to a time-homogeneous Markov chain, we show the distributional convergence of the iterates in Wasserstein distance and establish its exponential convergence rate. We also establish a Central Limit Theory for Q-learning iterates, demonstrating the asymptotic normality of the averaged iterates. Moreover, we provide an explicit expansion of the asymptotic bias of the averaged iterate in stepsize. Specifically, the bias is proportional to the stepsize up to higher-order terms and we provide an explicit expression for the linear coefficient. This precise characterization of the bias allows the application of Richardson-Romberg (RR) extrapolation technique to construct a new estimate that is provably closer to the optimal Q function. Numerical results corroborate our theoretical finding on the improvement of the RR extrapolation method. 
    more » « less
    Free, publicly-accessible full text available August 9, 2025
  3. We study security threats to Markov games due to information asymmetry and misinformation. We consider an attacker player who can spread misinformation about its reward function to influence the robust victim player's behavior. Given a fixed fake reward function, we derive the victim's policy under worst-case rationality and present polynomial-time algorithms to compute the attacker's optimal worst-case policy based on linear programming and backward induction. Then, we provide an efficient inception (""planting an idea in someone's mind"") attack algorithm to find the optimal fake reward function within a restricted set of reward functions with dominant strategies. Importantly, our methods exploit the universal assumption of rationality to compute attacks efficiently. Thus, our work exposes a security vulnerability arising from standard game assumptions under misinformation. 
    more » « less
    Free, publicly-accessible full text available August 9, 2025
  4. We study the game modification problem, where a benevolent game designer or a malevolent adversary modifies the reward function of a zero-sum Markov game so that a target deterministic or stochastic policy profile becomes the unique Markov perfect Nash equilibrium and has a value within a target range, in a way that minimizes the modification cost. We characterize the set of policy profiles that can be installed as the unique equilibrium of a game and establish sufficient and necessary conditions for successful installation. We propose an efficient algorithm that solves a convex optimization problem with linear constraints and then performs random perturbation to obtain a modification plan with a near-optimal cost. 
    more » « less
    Free, publicly-accessible full text available July 21, 2025
  5. In many reinforcement learning (RL) applications, we want policies that reach desired states and then keep the controlled system within an acceptable region around the desired states over an indefinite period of time. This latter objective is called stability and is especially important when the state space is unbounded, such that the states can be arbitrarily far from each other and the agent can drift far away from the desired states. For example, in stochastic queuing networks, where queues of waiting jobs can grow without bound, the desired state is all-zero queue lengths. Here, a stable policy ensures queue lengths are finite while an optimal policy minimizes queue lengths. Since an optimal policy is also stable, one would expect that RL algorithms would implicitly give us stable policies. However, in this work, we find that deep RL algorithms that directly minimize the distance to the desired state during online training often result in unstable policies, i.e., policies that drift far away from the desired state. We attribute this instability to poor credit-assignment for destabilizing actions. We then introduce an approach based on two ideas: 1) a Lyapunov-based cost-shaping technique and 2) state transformations to the unbounded state space. We conduct an empirical study on various queuing networks and traffic signal control problems and find that our approach performs competitively against strong baselines with knowledge of the transition dynamics. Our code is available here: https://github.com/Badger-RL/STOP. 
    more » « less
    Free, publicly-accessible full text available July 21, 2025
  6. We study robust Markov games (RMG) with 𝑠-rectangular uncertainty. We show a general equivalence between computing a robust Nash equilibrium (RNE) of a 𝑠-rectangular RMG and computing a Nash equilibrium (NE) of an appropriately constructed regularized MG. The equivalence result yields a planning algorithm for solving 𝑠-rectangular RMGs, as well as provable robustness guarantees for policies computed using regularized methods. However, we show that even for just reward-uncertain two-player zero-sum matrix games, computing an RNE is PPAD-hard. Consequently, we derive a special uncertainty structure called efficient player-decomposability and show that RNE for two-player zero-sum RMG in this class can be provably solved in polynomial time. This class includes commonly used uncertainty sets such as 𝐿1 and 𝐿∞ ball uncertainty sets. 
    more » « less
    Free, publicly-accessible full text available July 21, 2025
  7. Motivated by Q-learning, we study nonsmooth contractive stochastic approximation (SA) with constant stepsize. We focus on two important classes of dynamics: 1) nonsmooth contractive SA with additive noise, and 2) synchronous and asynchronous Q-learning, which features both additive and multiplicative noise. For both dynamics, we establish weak convergence of the iterates to a stationary limit distribution in Wasserstein distance. Furthermore, we propose a prelimit coupling technique for establishing steady-state convergence and characterize the limit of the stationary distribution as the stepsize goes to zero. Using this result, we derive that the asymptotic bias of nonsmooth SA is proportional to the square root of the stepsize, which stands in sharp contrast to smooth SA. This bias characterization allows for the use of Richardson-Romberg extrapolation for bias reduction in nonsmooth SA. 
    more » « less
    Free, publicly-accessible full text available June 10, 2025
  8. Free, publicly-accessible full text available May 2, 2025
  9. In modern computing systems, jobs' resource requirements often vary over time. Accounting for this temporal variability during job scheduling is essential for meeting performance goals. However, theoretical understanding on how to schedule jobs with time-varying resource requirements is limited. Motivated by this gap, we propose a new setting of the stochastic bin-packing problem in service systems that allows for time-varying job resource requirements, also referred to as 'item sizes' in traditional bin-packing terms. In this setting, a job or 'item' must be dispatched to a server or 'bin' upon arrival. Its resource requirement may vary over time while in service, following a Markovian assumption. Once the job's service is complete, it departs from the system. Our goal is to minimize the expected number of active servers, or 'non-empty bins', in steady state. Under our problem formulation, we develop a job dispatch policy, named Join-Reqesting-Server (JRS). Broadly, JRS lets each server independently evaluate its current job configuration and decide whether to accept additional jobs, balancing the competing objectives of maximizing throughput and minimizing the risk of resource capacity overruns. The JRS dispatcher then utilizes these individual evaluations to decide which server to dispatch each arriving job to. The theoretical performance guarantee of JRS is in the asymptotic regime where the job arrival rate scales large linearly with respect to a scaling factor r. We show that JRS achieves an additive optimality gap of O(√r) in the objective value, where the optimal objective value is Θ(r). When specialized to constant job resource requirements, our result improves upon the state-of-the-art o(r) optimality gap. Our technical approach highlights a novel policy conversion framework that reduces the policy design problem into a single-server problem. 
    more » « less