skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2340121

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The physical fidelity of turbulence models can benefit from a partial resolution of fluctuations, but doing so often comes with an increase in computational cost. To explore this trade-off in the context of wall-bounded flows, this paper introduces a framework for turbulence-resolving integral simulations (TRIS) with the goal of efficiently resolving the largest motions using a two-dimensional, three-component representation of the flow defined by instantaneous wall-normal integrals of velocity and pressure. Self-sustaining turbulence with qualitatively realistic large-scale structures is demonstrated for TRIS on an open-channel (half-channel) flow configuration using moment-of-momentum integral equations derived from Navier–Stokes with relatively simple closure approximations. Evidence from direct numerical simulations (DNS) suggests that TRIS can theoretically resolve$$35\,\%{-}40\,\%$$of the turbulent skin friction enhancement for friction Reynolds numbers between$$180$$and$$5200$$, without a noticeable decrease or increase as a function of Reynolds number. The current implementation of TRIS can match this resolution while simulating one flow through time in$${\sim}1$$minute on a single processor, even for very large Reynolds numbers. The framework facilitates a detailed apples-to-apples comparison of predicted statistics against data from DNS. Comparisons at friction Reynolds numbers of$$395$$and$$590$$show that TRIS generates a relatively accurate representation of the flow, while highlighting discrepancies that demonstrate a need for improving the closure models. The present results for open-channel flow represent a proof of concept for TRIS as a new approach for wall-bounded turbulence modelling, motivating extension to more general flow configurations such as boundary layers on immersed objects. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  2. Turbulent boundary layers on immersed objects can be significantly altered by the pressure gradients imposed by the flow outside the boundary layer. The interaction of turbulence and pressure gradients can lead to complex phenomena such as relaminarization, history effects and flow separation. The angular momentum integral (AMI) equation (Elnahhas & Johnson,J. Fluid Mech., vol. 940, 2022, A36) is extended and applied to high-fidelity simulation datasets of non-zero pressure gradient turbulent boundary layers. The AMI equation provides an exact mathematical equation for quantifying how turbulence, free-stream pressure gradients and other effects alter the skin friction coefficient relative to a baseline laminar boundary layer solution. The datasets explored include flat-plate boundary layers with nearly constant adverse pressure gradients, a boundary layer over the suction surface of a two-dimensional NACA 4412 airfoil and flow over a two-dimensional Gaussian bump. Application of the AMI equation to these datasets maps out the similarities and differences in how boundary layers interact with favourable and adverse pressure gradients in various scenarios. Further, the fractional contribution of the pressure gradient to skin friction attenuation in adverse-pressure-gradient boundary layers appears in the AMI equation as a new Clauser-like parameter with some advantages for understanding similarities and differences related to upstream history effects. The results highlight the applicability of the integral-based analysis to provide quantitative, interpretable assessments of complex boundary layer physics. 
    more » « less