skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2347832

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For an integer , the Erdős–Rogers function is the maximum integer such that every ‐vertex ‐free graph has a ‐free induced subgraph with vertices. It is known that for all , as . In this paper, we show that for all , there exists a constant such thatThis improves previous bounds of order by Dudek, Retter and Rödl and answers a question of Warnke. 
    more » « less
  2. ABSTRACT For ak‐uniform hypergraph and a positive integer , the Ramsey number denotes the minimum such that every ‐vertex ‐free ‐uniform hypergraph contains an independent set of vertices. A hypergraph isslowly growingif there is an ordering of its edges such that for each . We prove that if is fixed and is any non‐k‐partite slowly growing ‐uniform hypergraph, then for ,In particular, we deduce that the off‐diagonal Ramsey number is of order , where is the triple system . This is the only 3‐uniform Berge triangle for which the polynomial power of its off‐diagonal Ramsey number was not previously known. Our constructions use pseudorandom graphs and hypergraph containers. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract Building on recent work of Mattheus and Verstraëte, we establish a general connection between Ramsey numbers of the form for a fixed graph and a variant of the Zarankiewicz problem asking for the maximum number of 1s in an by ‐matrix that does not have any matrix from a fixed finite family derived from as a submatrix. As an application, we give new lower bounds for the Ramsey numbers and , namely, and . We also show how the truth of a plausible conjecture about Zarankiewicz numbers would allow an approximate determination of for any fixed integer . 
    more » « less