skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the order of the classical Erdős–Rogers functions
Abstract For an integer , the Erdős–Rogers function is the maximum integer such that every ‐vertex ‐free graph has a ‐free induced subgraph with vertices. It is known that for all , as . In this paper, we show that for all , there exists a constant such thatThis improves previous bounds of order by Dudek, Retter and Rödl and answers a question of Warnke.  more » « less
Award ID(s):
2347832
PAR ID:
10644735
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Bulletin of the London Mathematical Society
Volume:
57
Issue:
2
ISSN:
0024-6093
Format(s):
Medium: X Size: p. 582-598
Size(s):
p. 582-598
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We show that defines a birational map and has no fixed part for some bounded positive integermfor any ‐lc surfaceXsuch that is big and nef. For every positive integer , we construct a sequence of projective surfaces , such that is ample, for everyi, , and for any positive integerm, there existsisuch that has nonzero fixed part. These results answer the surface case of a question of Xu. 
    more » « less
  2. Abstract Consider averages along the prime integers ℙ given by {\mathcal{A}_N}f(x) = {N^{ - 1}}\sum\limits_{p \in \mathbb{P}:p \le N} {(\log p)f(x - p).} These averages satisfy a uniform scale-free ℓ p -improving estimate. For all 1 < p < 2, there is a constant C p so that for all integer N and functions f supported on [0, N ], there holds {N^{ - 1/p'}}{\left\| {{\mathcal{A}_N}f} \right\|_{\ell p'}} \le {C_p}{N^{ - 1/p}}{\left\| f \right\|_{\ell p}}. The maximal function 𝒜 * f = sup N |𝒜 N f | satisfies ( p , p ) sparse bounds for all 1 < p < 2. The latter are the natural variants of the scale-free bounds. As a corollary, 𝒜 * is bounded on ℓ p ( w ), for all weights w in the Muckenhoupt 𝒜 p class. No prior weighted inequalities for 𝒜 * were known. 
    more » « less
  3. Abstract Let and be natural numbers greater or equal to 2. Let be a homogeneous polynomial in variables of degree with integer coefficients , where denotes the inner product, and denotes the Veronese embedding with . Consider a variety in , defined by . In this paper, we examine a set of integer vectors , defined bywhere is a nonsingular form in variables of degree with for some constant depending at most on and . Suppose has a nontrivial integer solution. We confirm that the proportion of integer vectors in , whose associated equation  is everywhere locally soluble, converges to a constant as . Moreover, for each place of , if there exists a nonzero such that and the variety in admits a smooth ‐point, the constant is positive. 
    more » « less
  4. ABSTRACT For ak‐uniform hypergraph and a positive integer , the Ramsey number denotes the minimum such that every ‐vertex ‐free ‐uniform hypergraph contains an independent set of vertices. A hypergraph isslowly growingif there is an ordering of its edges such that for each . We prove that if is fixed and is any non‐k‐partite slowly growing ‐uniform hypergraph, then for ,In particular, we deduce that the off‐diagonal Ramsey number is of order , where is the triple system . This is the only 3‐uniform Berge triangle for which the polynomial power of its off‐diagonal Ramsey number was not previously known. Our constructions use pseudorandom graphs and hypergraph containers. 
    more » « less
  5. We extend results of Richard Holley beyond the integer lattice to a large class of countable groups which includes free groups and all amenable groups: for nearest-neighbor interactions on the Cayley graphs of such groups, we show that a shift-invariant measure is Gibbs if and only if it is Glauber-invariant. Moreover, any shift-invariant measure converges weakly to the set of Gibbs measures when evolved under the corresponding Glauber dynamics. These results are proven using a notion of free energy density relative to a sofic approximation by homomorphisms, which avoids the boundary problems which appear when applying a standard free energy method in a nonamenable setting. We also show that any measure which minimizes this free energy density is Gibbs. 
    more » « less