skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2400091

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A new supramolecular tecton is designed that has the unique potential of assembling well-ordered supramolecular complexes by forming five directional hydrogen bonds at a time. It ensures an ordered distribution of inorganic halometallate anions. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  2. A heterometallic single-source molecular precursor Li2Mn2(tbaoac)6 (1 , tbaoac = tert -butyl acetoacetato) has been specifically designed to achieve the lowest decomposition temperature and a clean conversion to mixed-metal oxides. The crystal structure of this tetranuclear molecule was determined by single crystal X-ray diffraction, and the retention of heterometallic structure in solution and in the gas phase was confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry, respectively. Thermal decomposition of this precursor at the temperatures as low as 310 oC resulted in a new metastable oxide phase formulated as lithium-rich, oxygen-deficient spinel Li1.5Mn1.5O3.5. This formulation was supported by a comprehensive suite of techniques including thermogravimetric/differential thermal analysis, elemental analysis, inductively coupled mass spectrometry, iodometric titration, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy studies, and Rietveld refinement from powder X-ray diffraction data. Upon heating to about 400 oC, this new low-temperature phase disproportionates stoichiometrically, gradually converting to layered Li2MnO3 and spinel Li1+x Mn2-x O4 (x < 0.5). Further heating to 750 oC results in formation of thermodynamically stable Li2MnO3 and LiMn2O4 phases. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  3. A long-standing issue about the correct identification of an important starting reagent, iron(III) hexafluoroacetylacetonate, Fe(hfac)3(1), has been resolved. Thetris-chelated mononuclear complex was found to crystallize in two polymorph modifications which can be assigned as the low-temperature (1-L) monoclinicP21/nand the high-temperature (1-H) trigonalP\overline{3}. Low-temperature polymorph1-Lwas found to transform to1-Hupon sublimation at 44 °C. Two modifications are clearly distinguished by powder X-ray diffraction (PXRD), single-crystal X-ray diffraction, differential scanning calorimetry (DSC), and melting-point measurements. On the other hand, the two forms share similar characteristics in direct analysis in real-time mass spectrometry (DART-MS), attenuated total reflection (ATR) spectroscopy, and some physical properties, such as color, volatility, sensitivity, and solubility. Analysis of the literature and some of our preliminary data strongly suggest that the appearance of two polymorph modifications for trivalent metal (both transition and main group) hexafluoroacetylacetonates is a common case for several largely used complexes not yet accounted for in the crystallographic databases. 
    more » « less