The paper describes a heterobimetallic mixed-ligand hexanuclear precursor [NaMn2(thd)4(OAc)]2 (1) (thd = 2,2,6,6-tetramethyl-3,5-heptadionate; OAc = acetate) that was designed based on its lithium homoleptic analogue, [LiMn2(thd)5], by replacing one of the thd ligands with an acetate group in order to accommodate 5-coordinated sodium instead of tetrahedral lithium ion. The complex, which is highly volatile and soluble in a variety of common solvents, has been synthesized by both the solid-state and solution methods. The unique “dimer-of-trimers” heterometallic structure consists of two trinuclear [NaMnII2(thd)4]+ units firmly bridged by two acetate ligands. X-ray diffraction techniques, DART mass spectrometry, ICP-OES analysis, and IR spectroscopy have been employed to confirm the structure and composition of the hexanuclear complex. Similar to the Li counterpart forming LiMn2O4 spinel material upon thermal decomposition, the title Na:Mn = 1:2 compound was utilized as the first single-source precursor for the low-temperature preparation of Na4Mn9O18 tunnel oxide. Importantly, four Mn sites in the hexanuclear molecule can be potentially partially substituted by other transition metals, leading to heterotri- and tetrametallic precursors for the advanced quaternary and quinary Na-ion oxide cathode materials.
more »
« less
This content will become publicly available on February 28, 2026
Lithium-rich, oxygen-deficient spinel obtained through low-temperature decomposition of heterometallic molecular precursor
A heterometallic single-source molecular precursor Li2Mn2(tbaoac)6 (1 , tbaoac = tert -butyl acetoacetato) has been specifically designed to achieve the lowest decomposition temperature and a clean conversion to mixed-metal oxides. The crystal structure of this tetranuclear molecule was determined by single crystal X-ray diffraction, and the retention of heterometallic structure in solution and in the gas phase was confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry, respectively. Thermal decomposition of this precursor at the temperatures as low as 310 oC resulted in a new metastable oxide phase formulated as lithium-rich, oxygen-deficient spinel Li1.5Mn1.5O3.5. This formulation was supported by a comprehensive suite of techniques including thermogravimetric/differential thermal analysis, elemental analysis, inductively coupled mass spectrometry, iodometric titration, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy studies, and Rietveld refinement from powder X-ray diffraction data. Upon heating to about 400 oC, this new low-temperature phase disproportionates stoichiometrically, gradually converting to layered Li2MnO3 and spinel Li1+x Mn2-x O4 (x < 0.5). Further heating to 750 oC results in formation of thermodynamically stable Li2MnO3 and LiMn2O4 phases.
more »
« less
- PAR ID:
- 10590122
- Publisher / Repository:
- OAE Publishing Inc.
- Date Published:
- Journal Name:
- Energy Materials
- Volume:
- 5
- Issue:
- 7
- ISSN:
- 2770-5900
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work raises a fundamental question about the “real” structure of molecular compounds containing three different metals: whether they consist of genuine hetero tri metallic species or of a mixture of parent hetero bi metallic species. Heterotrimetallic complex Li 2 CoNi(tbaoac) 6 ( 1 , tbaoac = tert -butyl acetoacetate) has been designed based on the model tetranuclear structure featuring two transition metal sites in order to be utilized as a molecular precursor for the low-temperature preparation of the LiCo 0.5 Ni 0.5 O 2 battery cathode material. An investigation of the structure of 1 appeared to be very challenging, since the Co and Ni atoms have very similar atomic numbers, monoisotopic masses, and radii as well as the same oxidation state and coordination number/environment. Using a statistical analysis of heavily overlaid isotope distribution patterns of the [Li 2 MM′L 5 ] + (M/M′ = Co 2 , Ni 2 , and CoNi) ions in DART mass spectra, it was concluded that the reaction product 1 contains both heterotrimetallic and bimetallic species. A structural analogue approach has been applied to obtain Li 2 MMg(tbaoac) 6 (M = Co ( 2 ) and Ni ( 3 )) complexes that contain lighter, diamagnetic magnesium in the place of one of the 3d transition metals. X-ray crystallography, mass spectrometry, and NMR spectroscopy unambiguously confirmed the presence of three types of molecules in the reaction mixture that reaches an equilibrium, Li 2 M 2 L 6 + Li 2 Mg 2 L 6 ↔ 2Li 2 MMgL 6 , upon prolonged reflux in solution. The equilibrium mixture was shown to have a nearly statistical distribution of the three molecules, and this is fully supported by the results of theoretical calculations revealing that the stabilization energies of hetero tri metallic assemblies fall exactly in between those for the parent hetero bi metallic species. The LiCo 0.5 Ni 0.5 O 2 quaternary oxide has been obtained in its phase-pure form by thermal decomposition of heterometallic precursor 1 at temperatures as low as 450 °C. Its chemical composition, structure, morphology, and transition metal distribution have been studied by X-ray and electron diffraction techniques and compositional energy-dispersive X-ray mapping with nanometer resolution. The work clearly illustrates the advantages of heterometallic single-source precursors over the corresponding multi-source precursors.more » « less
-
Design of hetero tri metallic molecules, especially those containing at least two different metals with close atomic numbers, radii, and the same coordination number/environment is a challenging task. This quest is greatly facilitated by having a heterobimetallic parent molecule that features multiple metal sites with only some of those displaying substitutional flexibility. Recently, a unique heterobimetallic complex LiMn 2 (thd) 5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been introduced as a single-source precursor for the preparation of a popular spinel cathode material, LiMn 2 O 4 . Theoretical calculations convincingly predict that in the above trinuclear molecule only one of the Mn sites is sufficiently flexible to be substituted with another 3d transition metal. Following those predictions, two hetero tri metallic complexes, LiMn 2−x Co x (thd) 5 ( x = 1 ( 1a ) and 0.5 ( 1b )), that represent full and partial substitution, respectively, of Co for Mn in the parent molecule, have been synthesized. X-ray structural elucidation clearly showed that only one transition metal position in the trinuclear molecule contains Co, while the other site remains fully occupied by Mn. A number of techniques have been employed for deciphering the structure and composition of hetero tri metallic compounds. Synchrotron resonant diffraction experiments unambiguously assigned 3d transition metal positions as well as provided a precise “site-specific Mn/Co elemental analysis” in a single crystal, even in an extremely difficult case of severely disordered structure formed by the superposition of two enantiomers. DART mass spectrometry and magnetic measurements clearly confirmed the presence of hetero tri metallic species LiMnCo(thd) 5 rather than a statistical mixture of two hetero bi metallic LiMn 2 (thd) 5 and LiCo 2 (thd) 5 molecules. Heterometallic precursors 1a and 1b were found to exhibit a clean decomposition yielding phase-pure LiMnCoO 4 and LiMn 1.5 Co 0.5 O 4 spinels, respectively, at the relatively low temperature of 400 °C. The latter oxide represents an important “5 V spinel” cathode material for the lithium ion batteries. Transmission electron microscopy confirmed a homogeneous distribution of transition metals in quaternary oxides obtained by pyrolysis of single-source precursors.more » « less
-
The study of high-entropy materials has attracted enormous interest since they could show new functional properties that are not observed in their related parent phases. Here, we report single crystal growth, structure, thermal transport, and magnetic property studies on a novel high-entropy oxide with the spinel structure (MgMnFeCoNi)Al2O4. We have successfully grown high-quality single crystals of this high-entropy oxide using the optical floating zone growth technique for the first time. The sample was confirmed to be a phase pure high-entropy oxide using x-ray diffraction and energy-dispersive spectroscopy. Through magnetization measurements, we found (MgMnFeCoNi)Al2O4 exhibits a cluster spin glass state, though the parent phases show either antiferromagnetic ordering or spin glass states. Furthermore, we also found that (MgMnFeCoNi)Al2O4 has much greater thermal expansion than its CoAl2O4 parent compound using high resolution neutron Larmor diffraction. We further investigated the structure of this high-entropy material via Raman spectroscopy and extended x-ray absorption fine structure spectroscopy (EXAFS) measurements. From Raman spectroscopy measurements, we observed (MgMnFeCoNi)Al2O4 to display a combination of the active Raman modes in its parent compounds with the modes shifted and significantly broadened. This result, together with the varying bond lengths probed by EXAFS, reveals severe local lattice distortions in this high-entropy phase. Additionally, we found a substantial decrease in thermal conductivity and suppression of the low temperature thermal conductivity peak in (MgMnFeCoNi)Al2O4, consistent with the increased lattice defects and strain. These findings advance the understanding of the dependence of thermal expansion and transport on the lattice distortions in high-entropy materials.more » « less
-
null (Ed.)The Li1.17Ni0.17Mn0.50Co0.17O2 Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMn1.5Co0.5O4 high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the molecular precursor LiMn1.5Co0.5(thd)5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) dissolved in diethyl ether, followed by thermal decomposition at 400 °C inair resulting in a chemically homogeneous cubic spinel. The structure and chemical composition of the coatings, deposited on the model SiO2 spheres and Li-rich NMC crystallites, were analyzed using powder X-ray diffraction, electron diffraction, high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) mapping. The coated material containing 12 wt.% of spinel demonstrates a significantly improved first cycle Coulombic efficiency of 92% with a high first cycle discharge capacity of 290 mAhg−1. The coating also improves the capacity and voltage retention monitored over 25 galvanostatic charge–discharge cycles, although a complete suppression of the capacity and voltage fade is not achieved.more » « less
An official website of the United States government
