skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2401159

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum transport is often characterized not just by mean observables like the particle or energy current but by their fluctuations and higher moments, which can act as detailed probes of the physical mechanisms at play. However, relatively few theoretical methods are able to access the full counting statistics (FCS) of transport processes through electronic junctions in strongly correlated regimes. While most experiments are concerned with steady state properties, most accurate theoretical methods rely on computationally expensive propagation from a tractable initial state. Here, we propose a simple approach for computing the FCS through a junction directly at the steady state, utilizing the propagator noncrossing approximation. Compared to time propagation, our method offers reduced computational cost at the same level of approximation, but the idea can also be used within other approximations or as a basis for numerically exact techniques. We demonstrate the method’s capabilities by investigating the impact of lead dimensionality on electronic transport in the nonequilibrium Anderson impurity model at the onset of Kondo physics. Our results reveal a distinct signature of one dimensional leads in the noise and Fano factor not present for other dimensionalities, showing the potential of FCS measurements as a probe of the environment surrounding a quantum dot. 
    more » « less
  2. A precise dynamical characterization of quantum impurity models with multiple interacting orbitals is challenging. In quantum Monte Carlo methods, this is embodied by sign problems. A dynamical sign problem makes it exponentially difficult to simulate long times. A multi-orbital sign problem generally results in a prohibitive computational cost for systems with multiple impurity degrees of freedom even in static equilibrium calculations. Here, we present a numerically exact inchworm method that simultaneously alleviates both sign problems, enabling simulation of multi-orbital systems directly in the equilibrium or nonequilibrium steady-state. The method combines ideas from the recently developed steady-state inchworm Monte Carlo framework [Erpenbeck et al., Phys. Rev. Lett. 130, 186301 (2023)] with other ideas from the equilibrium multi-orbital inchworm algorithm [Eidelstein et al., Phys. Rev. Lett. 124, 206405 (2020)]. We verify our method by comparison with analytical limits and numerical results from previous methods. 
    more » « less