skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2401482

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract These notes were prepared for theLefschetz Preparatory School, a graduate summer course held in Krakow, May 6–10, 2024. They present the story of the algebraic Lefschetz properties from their origin in algebraic geometry to some recent developments in commutative algebra. The common thread of the notes is a bias towards topics surrounding the algebraic Lefschetz properties that have a topological flavor. These range from the Hard Lefschetz Theorem for cohomology rings to commutative algebraic analogues of these rings, namely artinian Gorenstein rings, and topologically motivated operations among such rings. 
    more » « less
    Free, publicly-accessible full text available June 28, 2026
  2. Abstract We define $$i$$-Lorentzian polynomials in two variables, and characterize them as the real homogeneous Macaulay dual generators whose corresponding codimension two algebras satisfy the mixed Hodge–Riemann relations in degree $$i$$ on the positive orthant of linear forms. We further show that $$i$$-Lorentzian polynomials of degree $$d$$ are in one-to-one correspondence with totally nonnegative Toeplitz matrices of size $$(i+1)\times (d-i+1)$$. Using this latter characterization, we show that a certain subclass of real rooted polynomials called normally stable are $$i$$-Lorentzian for all $$i$$. Our results also lead to a new theorem on Toeplitz matrices: the closure of the set of totally positive Toeplitz matrices equals the set of totally nonnegative Toeplitz matrices. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Symmetric strongly shifted ideals constitute a class of monomial ideals which are equipped with an action of the symmetric group and are analogous to the well-studied class of strongly stable monomial ideals. In this paper, we focus on algebraic and combinatorial properties of symmetric strongly shifted ideals. On the algebraic side, we elucidate properties that pertain to behavior under ideal operations, primary decomposition, and the structure of their Rees algebra. On the combinatorial side, we develop a notion of partition Borel generators which leads to connections to discrete polymatroids, convex polytopes, and permutohedral toric varieties. 
    more » « less
    Free, publicly-accessible full text available January 6, 2026
  4. We introduce the class of principal symmetric ideals, which are ideals generated by the orbit of a single polynomial under the action of the symmetric group. Fixing the degree of the generating polynomial, this class of ideals is parametrized by points in a suitable projective space. We show that the minimal free resolution of a principal symmetric ideal is constant on a non-empty Zariski open subset of this projective space and we determine this resolution explicitly. Along the way, we study two classes of graded algebras which we term narrow and extremely narrow; both of which are instances of compressed artinian algebras. 
    more » « less
    Free, publicly-accessible full text available December 30, 2025
  5. The connected sum construction, which takes as input Gorenstein rings and produces new Gorenstein rings, can be considered as an algebraic analogue for the topological construction having the same name. We determine the graded Betti numbers for connected sums of graded Artinian Gorenstein algebras. Along the way, we find the graded Betti numbers for fiber products of graded rings; an analogous result was obtained in the local case by Geller [Proc. Amer. Math. Soc. 150 (2022), pp. 4159–4172]. We relate the connected sum construction to the doubling construction, which also produces Gorenstein rings. Specifically, we show that, for any number of summands, a connected sum of doublings is the doubling of a fiber product ring. 
    more » « less
  6. Principal symmetric ideals were recently introduced by Harada et al. in [The minimal free resolution of a general principal symmetric ideal, preprint (2023), arXiv:2308.03141], where their homological properties are elucidated. They are ideals generated by the orbit of a single polynomial under permutations of variables in a polynomial ring. In this paper, we determine when a product of two principal symmetric ideals is principal symmetric and when the powers of a principal symmetric ideal are again principal symmetric ideals. We characterize the ideals that have the latter property as being generated by polynomials invariant up to a scalar multiple under permutation of variables. Recognizing principal symmetric ideals is an open question for the purpose of which we produce certain obstructions. We also demonstrate that the Hilbert functions of symmetric monomial ideals are not all given by symmetric monomial ideals, in contrast to the non-symmetric case. 
    more » « less