skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 6, 2026

Title: The combinatorial structure of symmetric strongly shifted ideals
Symmetric strongly shifted ideals constitute a class of monomial ideals which are equipped with an action of the symmetric group and are analogous to the well-studied class of strongly stable monomial ideals. In this paper, we focus on algebraic and combinatorial properties of symmetric strongly shifted ideals. On the algebraic side, we elucidate properties that pertain to behavior under ideal operations, primary decomposition, and the structure of their Rees algebra. On the combinatorial side, we develop a notion of partition Borel generators which leads to connections to discrete polymatroids, convex polytopes, and permutohedral toric varieties.  more » « less
Award ID(s):
2101225 2401482
PAR ID:
10582916
Author(s) / Creator(s):
;
Publisher / Repository:
EMS Press
Date Published:
Journal Name:
Journal of Combinatorial Algebra
ISSN:
2415-6302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Principal symmetric ideals were recently introduced by Harada et al. in [The minimal free resolution of a general principal symmetric ideal, preprint (2023), arXiv:2308.03141], where their homological properties are elucidated. They are ideals generated by the orbit of a single polynomial under permutations of variables in a polynomial ring. In this paper, we determine when a product of two principal symmetric ideals is principal symmetric and when the powers of a principal symmetric ideal are again principal symmetric ideals. We characterize the ideals that have the latter property as being generated by polynomials invariant up to a scalar multiple under permutation of variables. Recognizing principal symmetric ideals is an open question for the purpose of which we produce certain obstructions. We also demonstrate that the Hilbert functions of symmetric monomial ideals are not all given by symmetric monomial ideals, in contrast to the non-symmetric case. 
    more » « less
  2. Abstract We study when blowup algebras are ‐split or strongly ‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of ‐split filtrations and symbolic ‐split ideals. 
    more » « less
  3. Abstract We study a class of combinatorially defined polynomial ideals that are generated by minors of a generic symmetric matrix. Included within this class are the symmetric determinantal ideals, the symmetric ladder determinantal ideals, and the symmetric Schubert determinantal ideals of A. Fink, J. Rajchgot, and S. Sullivant. Each ideal in our class is a type C analog of a Kazhdan–Lusztig ideal of A. Woo and A. Yong; that is, it is the scheme‐theoretic defining ideal of the intersection of a type C Schubert variety with a type C opposite Schubert cell, appropriately coordinatized. The Kazhdan–Lusztig ideals that arise are exactly those where the opposite cell is 123‐avoiding. Our main results include Gröbner bases for these ideals, prime decompositions of their initial ideals (which are Stanley–Reisner ideals of subword complexes), and combinatorial formulas for their multigraded Hilbert series in terms of pipe dreams. 
    more » « less
  4. We introduce the class of principal symmetric ideals, which are ideals generated by the orbit of a single polynomial under the action of the symmetric group. Fixing the degree of the generating polynomial, this class of ideals is parametrized by points in a suitable projective space. We show that the minimal free resolution of a principal symmetric ideal is constant on a non-empty Zariski open subset of this projective space and we determine this resolution explicitly. Along the way, we study two classes of graded algebras which we term narrow and extremely narrow; both of which are instances of compressed artinian algebras. 
    more » « less
  5. In this article, we work with certain families of ideals called p p -families in rings of prime characteristic. This family of ideals is present in the theories of tight closure, Hilbert-Kunz multiplicity, and F F -signature. For each p p -family of ideals, we attach an Euclidean object called p p -body, which is analogous to the Newton Okounkov body associated with a graded family of ideals. Using the combinatorial properties of p p -bodies and algebraic properties of the Hilbert-Kunz multiplicity, we establish a Volume = Multiplicity formula for p p -families of m R \mathfrak {m}_{R} -primary ideals in a Noetherian local ring R R
    more » « less