General movements (GMs) have been widely used for the early clinical evaluation of infant brain development, allowing immediate evaluation of potential development disorders and timely rehabilitation. The infants’ general movements can be captured digitally, but the lack of quantitative assessment and well‐trained clinical pediatricians presents an obstacle for many years to achieve wider deployment, especially in low‐resource settings. There is a high potential to explore wearable sensors for movement analysis due to outstanding privacy, low cost, and easy‐to‐use features. This work presents a sparse sensor network with soft wireless IMU devices (SWDs) for automatic early evaluation of general movements in infants. The sparse network consisting of only five sensor nodes (SWDs) with robust mechanical properties and excellent biocompatibility continuously and stably captures full‐body motion data. The proof‐of‐the‐concept clinical testing with 23 infants showcases outstanding performance in recognizing neonatal activities, confirming the reliability of the system. Taken together with a tiny machine learning algorithm, the system can automatically identify risky infants based on the GMs, with an accuracy of up to 100% (99.9%). The wearable sparse sensor network with an artificial intelligence‐based algorithm facilitates intelligent evaluation of infant brain development and early diagnosis of development disorders.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Free, publicly-accessible full text available October 1, 2025
-
Prior research has validated Photoplethysmography (PPG) as a promising biomarker for assessing stress factors in construction workers, including physical fatigue, mental stress, and heat stress. However, the reliability of PPG as a stress biomarker in construction workers is hindered by motion artifacts (MA) - distortions in blood volume pulse measurements caused by sensor movement. This paper develops a deep convolutional autoencoder-based framework, trained to detect and reduce MA in MA-contaminated PPG signals. The framework's performance is evaluated using PPG signals acquired from individuals engaged in specific construction tasks. The results demonstrate the framework has effectiveness in both detecting and reducing MA in PPG signals with a detection accuracy of 93% and improvement in signal-to-noise ratio by over 88%. This research contributes to a more reliable and error-reduced usage of PPG signals for health monitoring in the construction industry.more » « lessFree, publicly-accessible full text available September 1, 2025
-
Recent advancements in wearable physiological sensing and artificial intelligence have made some remarkable progress in workers’ health monitoring in construction sites. However, the scalable application is still challenging. One of the major complications for deployment has been the distribution shift observed in the physiological data obtained through sensors. This study develops a deep adversarial domain adaptation framework to adapt to out-of-distribution data(ODD) in the wearable physiological device based on photoplethysmography (PPG). The domain adaptation framework is developed and validated with reference to the heart rate predictor based on PPG. A heart rate predictor module comprising feature generating encoder and predictor isinitially trained with data from a given training domain. An unsupervised adversarial domain adaptation method is then implemented for the test domain. In the domain adaptation process, the encoder network is adapted to generate domain invariant features for the test domain using discriminator-based adversarial optimization. The results demonstrate that this approach can effectively accomplish domain adaptation, as evidenced by a 27.68% reduction in heart rate prediction error for the test domain. The proposed framework offers potential for scaled adaptation in the jobsite by addressing the ODD problem.more » « lessFree, publicly-accessible full text available March 18, 2025
-
Construction workers often experience high levels of physical and mental stress due to the demanding nature of their work on construction sites. Real-time health monitoring can provide an effective means of detecting these stressors. Previous research in this field has demonstrated the potential of photoplethysmography (PPG), which represents cardiac activities, as a biomarker for assessing various stressors, including physical fatigue, mental stress, and heat stress. However, PPG acquisition during construction tasks is subject to several external noises, of which motion artifact is a major one. To address this, the study develops and examines an autoencoder network—a special type of artificial neural network—to remove PPG signals’ motion artifacts during construction tasks, thereby enhancing the accuracy of health assessments.Artifact-free PPG signals are acquired through subjects in a stationary position, which is used as the reference for training the autoencoder network. The network’s performance is examined with PPG signals acquired from the same subjects performing multiple construction tasks. The developed autoencoder network can increase the signal-to-noise ratio (SNR) by up to 33% for the corrupted signals acquired in a construction setting. This research contributes to the extensive and resilient use of PPG signals in health monitoring for construction workers.more » « lessFree, publicly-accessible full text available March 18, 2025
-
Free, publicly-accessible full text available March 18, 2025
-
Free, publicly-accessible full text available January 25, 2025
-
Free, publicly-accessible full text available January 25, 2025
-
Free, publicly-accessible full text available January 25, 2025
-
Recent advances in robotics have enabled robots to collaborate with workers in shared, fenceless workplaces in construction and civil engineering, which can improve productivity and address labor shortages. However, this collaboration may lead to collisions between workers and robots. Targeting safe collaboration, this study proposes an intention‐aware motion planning method for robots to avoid collisions. This method involves two novel deep networks that allow robots to anticipate the motions of workers based on inferences about workers' motion intentions. Then, a probabilistic collision‐checking mechanism is developed that enables robots to estimate the collision probability with the motions of workers and generate collision‐free adjustments. The results verify that the method enables robots to predict workers' intended motions 1 s in advance and generate adjustments with a collision probability of less than 5.0% during collaborative masonry tasks. This study facilitates the safe implementation of collaborative robots in construction and civil engineering.more » « lessFree, publicly-accessible full text available December 5, 2024