Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Peatlands are some of the world’s most carbon-dense ecosystems and release substantial quantities of greenhouse gases when degraded. However, conserving peatlands in many tropical areas is challenging due to limited knowledge of their distribution. To address this, we surveyed soils and plant communities in Colombia’s eastern lowlands, where few peatlands have previously been described. We documented peat soils >40 cm thick at 51 of more than 100 surveyed wetlands. We use our data to update a regional peatland classification, which includes a new and possibly widespread peatland type, ‘the white-sand peatland,’ as well as two distinctive open-canopy sub-types. Analysis of peat bulk density and organic matter content from 39 intact peat cores indicates that the average per-area carbon densities of these sites (490–1230 Mg C ha−1, depending on type) is 4–10 times the typical carbon stock of a (non-peatland) Amazonian forest. We used remote sensing to upscale our observations, generating the first data-driven peatland map for the region. The total estimated carbon stock of these peatlands of 1.91 petagrams (Pg C) (2-sigma confidence interval, 0.60–4.22) approaches that of South America’s largest known peatland complex in the northern Peruvian Amazon, indicating that substantial peat carbon stores on the continent have yet to be documented. These observations indicate that tropical peatlands may be far more diverse in form and structure and broadly distributed than is widely understood, which could have important implications for tropical peatland conservation strategies.more » « less
-
The extent and distribution of tropical peatlands, and their importance as a vulnerable carbon (C) store, remain poorly quantified. Although large peatland complexes in Peru, the Congo basin, and Southeast Asia have been mapped in detail, information on many other tropical areas is uncertain. In the Eastern Colombian lowlands, peatland area estimates range from 700 km2 to nearly 60,000 km2, leading to highly uncertain C stocks. Using new field data, high‐resolution Earth observation (EO), and a random forest approach, we mapped peatlands across Colombian territory East of the Andes below 400 m elevation. We estimated peatland extent using two approaches: a conservative method focused on medium‐to‐high peat probability areas and a more inclusive one accounting for large low‐probability areas. Multiplying these extents by below‐ground carbon density yields a conservative estimate of 0.95 (0.6–1.39 Pg C, 95% confidence interval) over 9,391 km2(7,369–11,549 km2) and up to 2.86 Pg C (1.76–4.22 Pg C) across 29,069 km2 (22,429–36,238 km2). Among four potentially peat‐forming ecosystems identified, palm swamps and floodplain forests contributed most to the peat extent and C stock. We found that most peatland patches were relatively small, covering less than 100 ha. We compared our map to previously published global and pan‐tropical peat maps and found low spatial overlap among them, suggesting that peat maps uninformed by local field information may not precisely specify which landscape areas within a peatland‐rich region are actually peatlands. We further assessed the suitability of different EO and climate variables, highlighting the need for high‐resolution data to capture local heterogeneities in the landscape.more » « lessFree, publicly-accessible full text available April 15, 2026
-
Tropical peatlands play an important role in global carbon (C) cycling, but little is known about factors driving carbon dioxide (CO2) and methane (CH4) emissions from these ecosystems, especially production in deeper soils. This study aimed to identify source material and processes regulating C emissions originating deep in three sites in a peatland on the Caribbean coast of Panama. We hypothesized that (1) surface-derived organic matter transported down the soil profile is the primary C source for respiration products at depth and that (2) high lignin content results in hydrogenotrophic methanogenesis as the dominant CH4 production pathway throughout the profile. We used radiocarbon isotopic values to determine whether CO2 and CH4 at depth are produced from modern substrates or ancient deep peat, and we used stable C isotopes to identify the dominant CH4 production pathway. Peat organic chemistry was characterized using 13C solid-state nuclear magnetic resonance spectroscopy (13C-NMR). We found that deep peat respiration products had radiocarbon signatures that were more similar to surface dissolved organic C (DOC) than deep solid peat. These results indicate that surface-derived organic matter was the dominant source for gas production at depth in this peatland, likely because of vertical transport of DOC from the surface to depth. Lignin, which was the most abundant compound (55 %–70 % of C), increased with depth across these sites, whereas other C compounds like carbohydrates did not vary with depth. These results suggest that there is no preferential decomposition of carbohydrates but instead preferential retention of lignin. Stable isotope signatures of respiration products indicated that hydrogenotrophic rather than acetoclastic methanogenesis was the dominant production pathway of CH4 throughout the peat profile. These results show that deep C in tropical peatlands does not contribute greatly to surface fluxes of carbon dioxide, with compounds like lignin preferentially retained. This protection of deep C helps explain how peatland C is retained over thousands of years and points to the vulnerability of this C should anaerobic conditions in these wet ecosystems change.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
