skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2408264

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the problem where a one‐dimensional elastic string is immersed in a two‐dimensional steady Stokes fluid. This is known as the Stokes immersed boundary problem and also as the Peskin problem. We consider the case with equal viscosities and with a fully non‐linear tension law; this model has been called the fully nonlinear Peskin problem. In this case we prove local in time wellposedness for arbitrary initial data in the scaling critical Besov space . We additionally prove the optimal higher order smoothing effects for the solution. To prove this result we derive a new formulation of the boundary integral equation that describes the parametrization of the string, and we crucially utilize a new cancelation structure. 
    more » « less
  2. Free, publicly-accessible full text available February 1, 2026
  3. This paper introduces the 3D Peskin problem: a two-dimensional elastic membrane immersed in a three-dimensional steady Stokes flow. We obtain the equations that model this free boundary problem and show that they admit a boundary integral reduction, providing an evolution equation for the elastic interface. We consider general nonlinear elastic laws, i.e. the fully nonlinear Peskin problem, and prove that the problem is well-posed in low-regularity Hölder spaces. Moreover, we prove that the elastic membrane becomes smooth instantly in time. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026