skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 30, 2026

Title: Well-posedness of the 3D Peskin problem
This paper introduces the 3D Peskin problem: a two-dimensional elastic membrane immersed in a three-dimensional steady Stokes flow. We obtain the equations that model this free boundary problem and show that they admit a boundary integral reduction, providing an evolution equation for the elastic interface. We consider general nonlinear elastic laws, i.e. the fully nonlinear Peskin problem, and prove that the problem is well-posed in low-regularity Hölder spaces. Moreover, we prove that the elastic membrane becomes smooth instantly in time.  more » « less
Award ID(s):
2408264 2055271
PAR ID:
10599175
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
World Scientific Publishing Company
Date Published:
Journal Name:
Mathematical Models and Methods in Applied Sciences
Volume:
35
Issue:
01
ISSN:
0218-2025
Page Range / eLocation ID:
113 to 216
Subject(s) / Keyword(s):
Peskin problem 3D fluid–structure interaction immersed boundary problem stokes flow.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the problem where a one‐dimensional elastic string is immersed in a two‐dimensional steady Stokes fluid. This is known as the Stokes immersed boundary problem and also as the Peskin problem. We consider the case with equal viscosities and with a fully non‐linear tension law; this model has been called the fully nonlinear Peskin problem. In this case we prove local in time wellposedness for arbitrary initial data in the scaling critical Besov space . We additionally prove the optimal higher order smoothing effects for the solution. To prove this result we derive a new formulation of the boundary integral equation that describes the parametrization of the string, and we crucially utilize a new cancelation structure. 
    more » « less
  2. Abstract. We consider a nonlinear, moving boundary, fluid-structure interaction problem between a time dependent incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh of elastic rods. The fluid flow is modeled by the time-dependent Navier- Stokes equations in a three-dimensional cylindrical domain, while the lateral wall of the cylinder is modeled by the two-dimensional linearly elastic Koiter shell equations coupled to a one-dimensional system of conservation laws defined on a graph domain, describing a mesh of curved rods. The mesh supported shell allows displacements in all three spatial directions. Two-way coupling based on kinematic and dynamic coupling conditions is assumed between the fluid and composite structure, and between the mesh of curved rods and Koiter shell. Problems of this type arise in many ap- plications, including blood flow through arteries treated with vascular prostheses called stents. We prove the existence of a weak solution to this nonlinear, moving boundary problem by using the time discretization via Lie operator splitting method combined with an Arbitrary Lagrangian-Eulerian approach, and a non-trivial extension of the Aubin-Lions-Simon compactness result to problems on moving domains. 
    more » « less
  3. Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper is concerned with an inverse acoustic-elastic interaction problem, which is to determine the location and shape of the elastic obstacle by using either the phased or phaseless far-field data. By introducing the Helmholtz decomposition, the model problem is reduced to a coupled boundary value problem of the Helmholtz equations. The jump relations are studied for the second derivatives of the single-layer potential in order to deduce the corresponding boundary integral equations. The well-posedness is discussed for the solution of the coupled boundary integral equations. An efficient and high order Nyström-type discretization method is proposed for the integral system. A numerical method of nonlinear integral equations is developed for the inverse problem. For the case of phaseless data, we show that the modulus of the far-field pattern is invariant under a translation of the obstacle. To break the translation invariance, an elastic reference ball technique is introduced. We prove that the inverse problem with phaseless far-field pattern has a unique solution under certain conditions. In addition, a numerical method of the reference ball technique based nonlinear integral equations is proposed for the phaseless inverse problem. Numerical experiments are presented to demonstrate the effectiveness and robustness of the proposed methods. 
    more » « less
  4. Mascia, Corrado; Terracina, Andrea; Tesei, Alberto (Ed.)
    We study a model of dislocations in two-dimensional elastic media. In this model, the displacement satisfies the system of linear elasticity with mixed displacement-traction homogeneous boundary conditions in the complement of an open curve in a bounded planar domain, and has a specified jump, the slip, across the curve, while the traction is continuous there. The stiffness tensor is allowed to be anisotropic and inhomogeneous. We prove well-posedness of the direct problem in a variational setting, assuming the coefficients are Lipschitz continuous. Using unique continuation arguments, we then establish uniqueness in the inverse problem of determining the dislocation curve and the slip from a single measurement of the displacement on an open patch of the traction-free part of the boundary. Uniqueness holds when the elasticity operators admits a suitable decomposition and the curve satisfies additional geometric assumptions. This work complements the results in Arch. Ration. Mech. Anal., 236(1):71-111, (2020), and in Preprint arXiv:2004.00321, which concern three-dimensional isotropic elastic media. 
    more » « less
  5. We propose a globally convergent computational technique for the nonlinear inverse problem of reconstructing the zero-order coefficient in a parabolic equation using partial boundary data. This technique is called the ``reduced dimensional method.'' Initially, we use the polynomial-exponential basis to approximate the inverse problem as a system of 1D nonlinear equations. We then employ a Picard iteration based on the quasi-reversibility method and a Carleman weight function. We will rigorously prove that the sequence derived from this iteration converges to the accurate solution for that 1D system without requesting a good initial guess of the true solution. The key tool for the proof is a Carleman estimate. We will also show some numerical examples. 
    more » « less