skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2410178

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With advancements in computational molecular modeling and powerful structure search methods, it is now possible to systematically screen crystal structures for small organic molecules. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026
  2. Biological systems, including proteins, employ water-mediated supramolecular interactions to adopt specific conformations for their functions. However, current solid-state supramolecular materials are typically stiff and fail to capture the dynamic behaviors observed in proteins. Here, we present dynamic crystal-hydrates of aliphatic dipeptides with sequence-isomers of leucine (L) and isoleucine (I). These crystals exhibit shallow conformational energy landscapes, with various reconfigurable crystal nano-architectures accessible through small changes in relative humidity and temperature. Specifically, for LI crystals, as water content changes, the solid-state supramolecular architecture rapidly and reversibly transitions between perpendicular and parallel honeycomb nano-architectures, as well as layered van der Waals structures, leading to significant and distinct variations in mechanical and photophysical properties. Our findings demonstrate the potential of leveraging aliphatic hydrophobic domains inspired by protein architectures to create dynamic solid-state materials with context-adaptive properties. 
    more » « less
    Free, publicly-accessible full text available January 13, 2026
  3. Free, publicly-accessible full text available September 16, 2025