Abstract Supramolecular chemistry can transform organic synthesis by revealing that crystalline materials are not static but rather dynamic environments for controlled covalent bond formations and manipulations. This review focuses on how supramolecular chemistry can be developed to direct molecular synthesis in the organic solid state, directing reliable C─C bond formations to enable transformations difficult or impossible in solution. Special attention is given to postsynthetic modifications that serve to broaden the functional scope of solid‐state reactivity allowing organic crystals to be developed as molecular flasks and a form of supramolecular matter.
more »
« less
This content will become publicly available on January 13, 2026
Context-Adaptive Nanotopology in Peptide Crystals
Biological systems, including proteins, employ water-mediated supramolecular interactions to adopt specific conformations for their functions. However, current solid-state supramolecular materials are typically stiff and fail to capture the dynamic behaviors observed in proteins. Here, we present dynamic crystal-hydrates of aliphatic dipeptides with sequence-isomers of leucine (L) and isoleucine (I). These crystals exhibit shallow conformational energy landscapes, with various reconfigurable crystal nano-architectures accessible through small changes in relative humidity and temperature. Specifically, for LI crystals, as water content changes, the solid-state supramolecular architecture rapidly and reversibly transitions between perpendicular and parallel honeycomb nano-architectures, as well as layered van der Waals structures, leading to significant and distinct variations in mechanical and photophysical properties. Our findings demonstrate the potential of leveraging aliphatic hydrophobic domains inspired by protein architectures to create dynamic solid-state materials with context-adaptive properties.
more »
« less
- Award ID(s):
- 2410178
- PAR ID:
- 10573190
- Publisher / Repository:
- ChemRXiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Anion binding and extraction from solutions is currently a dynamic research topic in the field of supramolecular chemistry. A particularly challenging task is the extraction of anions with large hydration energies, such as the carbonate ion. Carbonate-binding complexes are also receiving increased interest due to their relevance to atmospheric CO2 fixation. Nanojars are a class of self-assembled, supramolecular coordination complexes that have been shown to bind highly hydrophilic anions and to extract even the most hydrophilic ones, including carbonate, from water into aliphatic solvents. Here we present an expanded nanojar that is able to bind two carbonate ions, thus doubling the previously reported carbonate-binding capacity of nanojars. The new nanojar is characterized by detailed single-crystal X-ray crystallographic studies in the solid state and electrospray ionization mass spectrometric (including tandem MS/MS) studies in solution.more » « less
-
null (Ed.)The development of supramolecular tools to modulate the excitonic properties of non-covalent assemblies paves the way to engineer new classes of semicondcuting materials relevant to flexible electronics. While controlling the assembly pathways of organic chromophores enables the formation of J-like and H-like aggregates, strategies to tailor the excitonic properties of pre-assembled aggregates through post-modification are scarce. In the present contribution, we combine supramolecular chemistry with redox chemistry to modulate the excitonic properties and solid-state morphologies of aggregates built from stacks of water-soluble perylene diimide building blocks. The n-doping of initially formed aggregates in an aqueous medium is shown to produce π–anion stacks for which spectroscopic properties unveil a non-negligible degree of electron–electron interactions. Oxidation of the n-doped intermediates produces metastable aggregates where free exciton bandwidths (Ex BW ) increase as a function of time. Kinetic data analysis reveals that the dynamic increase of free exciton bandwidth is associated with the formation of superstructures constructed by means of a nucleation-growth mechanism. By designing different redox-assisted assembly pathways, we highlight that the sacrificial electron donor plays a non-innocent role in regulating the structure–function properties of the final superstructures. Furthermore, supramolecular architectures formed via a nucleation-growth mechanism evolve into ribbon-like and fiber-like materials in the solid-state, as characterized by SEM and HRTEM. Through a combination of ground-state electronic absorption spectroscopy, electrochemistry, spectroelectrochemistry, microscopy, and modeling, we show that redox-assisted assembly provides a means to reprogram the structure–function properties of pre-assembled aggregates.more » « less
-
Abstract The sensitivity and responsiveness of living cells to environmental changes are enabled by dynamic protein structures, inspiring efforts to construct artificial supramolecular protein assemblies. However, despite their sophisticated structures, designed protein assemblies have yet to be incorporated into macroscale devices for real-life applications. We report a 2D crystalline protein assembly ofC98/E57/E66L-rhamnulose-1-phosphate aldolase (CEERhuA) that selectively blocks or passes molecular species when exposed to a chemical trigger.CEERhuA crystals are engineered via cobalt(II) coordination bonds to undergo a coherent conformational change from a closed state (pore dimensions <1 nm) to an ajar state (pore dimensions ~4 nm) when exposed to an HCN(g) trigger. When layered onto a mesoporous silicon (pSi) photonic crystal optical sensor configured to detect HCN(g), the 2DCEERhuA crystal layer effectively blocks interferents that would otherwise result in a false positive signal. The 2DCEERhuA crystal layer opens in selective response to low-ppm levels of HCN(g), allowing analyte penetration into the pSi sensor layer for detection. These findings illustrate that designed protein assemblies can function as dynamic components of solid-state devices in non-aqueous environments.more » « less
-
UV-irradiation of assembled urea-tethered triphenylamine dimers results in the formation of persistent radicals, whereas radicals generated in solution are reactive and quickly degrade. In the solid-state, high quantities of radicals (approximately 1 in 150 molecules) are formed with a half-life of one week with no significant change in the single crystal X-ray diffraction. Remarkably, after decay, re-irradiation of the solid sample regenerates the radicals to their original concentration. The photophysics upon radical generation are also altered. Both the absorption and emission are significantly quenched without external oxidation likely due to the delocalization of the radicals within the crystals. The factors that influence radical stability and generation are correlated to the rigid supramolecular framework formed by the urea tether of the triphenylamine dimer. Electrochemical evidence demonstrates that these compounds can be oxidized in solution at 1.0 V vs. SCE to generate radical cations, whose EPR spectra were compared with spectra of the solid-state photogenerated radicals. Additionally, these compounds display changes in emission due to solvent effects from fluorescence to phosphorescence. Understanding how solid-state assembly alters the photophysical properties of triphenylamines could lead to further applications of these compounds for magnetic and conductive materials.more » « less
An official website of the United States government
