skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2412701

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We identify$$ {m}_{12}^2 $$ m 12 2 as a spurion of non-invertible Peccei-Quinn symmetry in the type II 2HDM with gauged quark flavor. Thus a UV theory which introduces quark color-flavor monopoles can naturally realize alignment without decoupling and can furthermore revive the Weinberg-Wilczek axion. As an example we consider the SU(9) theory of color-flavor unification, which needs no new fermions. This is the first model-building use of non-invertible symmetry to find a Dirac natural explanation for a smallrelevantparameter. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. A<sc>bstract</sc> We study Higgs boson production via vector boson fusion at the LHC, focusing on the processpp→H+jjand capturing the leading energy-enhanced contributions within the Standard Model Effective Field Theory (SMEFT) up to order 1/Λ4. Employing energy-scaling arguments, we predict the magnitude of each higher-dimensional operator’s contribution. Utilizing the geometric formulation of SMEFT, our analysis incorporates dimension-eight operators not previously considered. We find that the kinematics of vector boson fusion — characterized by two highly forward jets — tend to suppress contributions from higher-dimensional operators, requiring a lower scale Λ for SMEFT effects to become observable. This suggests that the SMEFT remains valid for lower Λ than expected. Combined with the fact that LEP constrains the dimension-six operators with the most considerable impact on vector boson fusion, a regime exists where dimension-eight operators can have significant effects. In many cases, these dimension-eight operators also influence associated production processes likepp→HV(jj), though differences in analysis cuts and kinematics mean this is not always the case. Our findings provide insights that could refine the search for SMEFT signals in collider experiments. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. A<sc>bstract</sc> In studying secondary gamma-ray emissions from Primordial Black Holes (PBHs), the production of scalar particles like pions and axion-like particles (ALPs) via Hawking radiation is crucial. While previous analyses assumed relativistic production, asteroid-mass PBHs, relevant to upcoming experiments like AMEGO-X, likely produce pions and ALPs non-relativistically when their masses exceed 10 MeV. To account for mass dependence in Hawking radiation, we revisit the greybody factors for massive scalars from Schwarzschild black holes, revealing significant mass corrections to particle production rates compared to the projected AMEGO-X sensitivity. We highlight the importance of considering non-relativisticπ0production in interpreting PBH gamma-ray signals, essential for determining PBH properties. Additionally, we comment on the potential suppression of pion production due to form factor effects when producing extended objects via Hawking radiation. We also provide an example code for calculating the Hawking radiation spectrum of massive scalar particles Image missing<#comment/>. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. A<sc>bstract</sc> We consider the possibility of indirect detection of dark sector processes by investigating a novel form of interaction between ambient dark matter (DM) and primordial black holes (PBHs). The basic scenario we envisage is that the ambient DM is “dormant”, i.e., it has interactions with the SM, but its potential for an associated SM signal is not realized for various reasons. We argue that the presence of PBHs with active Hawking radiation (independent of any DM considerations) can act as a catalyst in this regard by overcoming the aforementioned bottlenecks. The central point is that PBHs radiate all types of particles, whether in the standard model (SM) or beyond (BSM), which have a mass at or below their Hawking temperature. The emission of such radiation is “democratic” (up to the particle spin), since it is based on a coupling of sorts of gravitational origin. In particular, such shining of (possibly dark sector) particles onto ambient DM can then activate the latter into giving potentially observable SM signals. We illustrate this general mechanism with two specific models. First, we consider asymmetric DM, which is characterized by an absence of ambient anti-DM, and consequently the absence of DM indirect detection signals. In this case, PBHs can “resurrect” such a signal by radiating anti-DM, which then annihilates with ambient DM in order to give SM particles such as photons. In our second example, we consider the PBH emission of dark gauge bosons which can excite ambient DM into a heavier state (which is, again, not ambient otherwise), this heavier state later decays back into DM and photons. Finally, we demonstrate that we can obtain observable signals of these BSM models from asteroid-mass PBHs (Hawking radiating currently with ~$$ \mathcal{O}\left(\textrm{MeV}\right) $$ O MeV temperatures) at gamma-ray experiments such as AMEGO-X. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Abstract A phase shift in the acoustic oscillations of cosmic microwave background (CMB) spectra is a characteristic signature for the presence of non-photon radiation propagating differently from photons, even when the radiation couples to the Standard Model particles solely gravitationally. It is well-established that compared to the presence of free-streaming radiation, CMB spectra shift to higherℓ-modes in the presence of self-interacting non-photon radiation such as neutrinos and dark radiation. In this study, we further demonstrate that the scattering of non-photon radiation with dark matter can further amplify this phase shift. We show that when the energy density of the interacting radiation surpasses that of interacting dark matter around matter-radiation equality, the phase shift enhancement is proportional to the interacting dark matter abundance and remains insensitive to the radiation energy density. Given the presence of dark matter-radiation interaction, this additional phase shift emerges as a generic signature of models featuring an interacting dark sector or neutrino-dark matter scattering. Using neutrino-dark matter scattering as an example, we numerically calculate the amplified phase shift and offer an analytical interpretation of the result by modeling photon and neutrino perturbations with coupled harmonic oscillators. This framework also explains the phase shift contrast between self-interacting and free-streaming neutrinos. Fitting models with neutrino-dark matter or dark radiation-dark matter interactions to CMB and large-scale structure data, we validate the presence of the enhanced phase shift, affirmed by the linear dependence observed between the preferred regions of the sound horizon angleθsand interacting dark matter abundance. An increasedθsand a suppressed matter power spectrum is therefore a generic feature of models containing dark matter scattering with abundant dark radiation. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. We consider first order cosmological phase transitions (PTs) happening at late times below standard model temperatures T PT GeV . The inherently stochastic nature of bubble nucleation and the finite number of bubbles associated with a late-time PT lead to superhorizon fluctuations in the PT completion time. We compute how such fluctuations eventually source curvature fluctuations with universal properties, independent of the microphysics of the PT dynamics. Using cosmic microwave background (CMB) and large scale structure measurements, we constrain the energy released in a dark-sector PT. For 0.1 eV T PT keV this constraint is stronger than both the current bound from additional neutrino species Δ N eff , and in some cases, even CMB-S4 projections. Future measurements of CMB spectral distortions and pulsar timing arrays will also provide competitive sensitivity for keV T PT GeV . Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025