skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2413680

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A revised crystal structure of La(OH)2Cl is reported. This material is found to crystallize in space group P21/m and is isostructural to a series of Ln(OH)2Cl (Ln = Ce – Lu excluding Pm). The Ln(OH)2Cl series has been thoroughly studied, serving as analogues to proposed actinide structures for used nuclear fuel storage. The P21/m space group has been reported for each isostructural variant in this series. La(OH)2Cl is described in the context of the structural trends identified with this series. A lanthanum variant was previously reported, however, with symmetry corresponding to the space group P2/m. The data collected herein is compared to the previously published La(OH)2Cl in the space group P2/m. Here, we report an updated hydrothermal synthesis and revised crystallographic structure for La(OH)2Cl in P21/m. The reflection conditions of the collected X‐ray diffraction data, the bond valence sums of both structures, and density functional theory calculations are examined to justify the revised space group assignments. 
    more » « less
    Free, publicly-accessible full text available April 17, 2026