skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2414474

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine unlearning (MU) aims to remove the influence of specific data points from trained models, enhancing compliance with privacy regulations. However, the vulnerability of basic MU models to malicious unlearning requests in adversarial learning environments has been largely overlooked. Existing adversarial MU attacks suffer from three key limitations: inflexibility due to pre-defined attack targets, inefficiency in handling multiple attack requests, and instability caused by non-convex loss functions. To address these challenges, we propose a Flexible, Efficient, and Stable Attack (DDPA). First, leveraging Carathéodory's theorem, we introduce a convex polyhedral approximation to identify points in the loss landscape where convexity approximately holds, ensuring stable attack performance. Second, inspired by simplex theory and John's theorem, we develop a regular simplex detection technique that maximizes coverage over the parameter space, improving attack flexibility and efficiency. We theoretically derive the proportion of the effective parameter space occupied by the constructed simplex. We evaluate the attack success rate of our DDPA method on real datasets against state-of-the-art machine unlearning attack methods. Our source code is available at https://github.com/zzz0134/DDPA. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026