- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
March, Eleanor (1)
-
Meskhidze, Helen (1)
-
Weatherall, James (1)
-
Weatherall, James Owen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Teleparallel gravity shares many qualitative features with general relativity, but differs from it in the following way: whereas in general relativity, gravitation is a manifestation of spacetime curvature, in teleparallel gravity, spacetime is (always) flat. Gravitational effects in this theory arise due to spacetime torsion. It is often claimed that teleparallel gravity is an equivalent reformulation of general relativity. In this paper we question that view. We argue that the theories are not equivalent, by the criterion of categorical equivalence or any stronger criterion, and that teleparallel gravity posits strictly more structure than general relativity.more » « lessFree, publicly-accessible full text available May 20, 2026
-
March, Eleanor; Weatherall, James (, The British Journal for the Philosophy of Science)We consider two simple criteria for when a physical theory should be said to be ``generally covariant'', and we argue that these criteria are not met by Yang-Mills theory, even on geometric formulations of that theory. The reason, we show, is that the bundles encountered in Yang-Mills theory are not natural bundles; instead, they are gauge-natural. We then show how these observations relate to previous arguments about the significance of solder forms in assessing disanalogies between general relativity and Yang-Mills theory. We conclude by suggesting that general covariance is really about functoriality.more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
