skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2421780

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Previous studies demonstrate that the Madden‐Julian Oscillation (MJO) modulates tropical cyclone (TC) activity over various locations worldwide. Since TCs are associated with anomalous large‐scale circulations, they can influence the development of the MJO. However, the impact of TC on the MJO has not been thoroughly examined. This study investigates the influence of TC‐associated processes on the MJO development based on the analysis of a case observed during the Dynamics of the Madden‐Julian Oscillation field campaign. During the suppressed phase before the December 2011 MJO initiation, two TCs were active in the southern Tropical Indian Ocean (TIO). A dry air band within 10°S‐Eq is sustained by TC‐induced horizontal advection and descent, inhibiting large‐scale convection in the southern equatorial IO. Consequently, convection is triggered and develops only in the northern TIO around Eq‐10°N. The MJO initiates as convection develops south of the equator after the TCs dissipate. 
    more » « less
  2. Previous studies demonstrate that the Madden-Julian Oscillation (MJO) modulates tropical cyclone (TC) activity over various locations worldwide. Since TCs are associated with anomalous large-scale circulations, they can influence the development of the MJO. However, the impact of TC on the MJO has not been thoroughly examined. This study investigates the influence of TC-associated processes on the MJO development based on the analysis of a case observed during the Dynamics of the Madden-Julian Oscillation field campaign. During the suppressed phase before the December 2011 MJO initiation, two TCs were active in the southern Tropical Indian Ocean (TIO). A dry air band within 10°S-Eq is sustained by TC-induced horizontal advection and descent, inhibiting large-scale convection in the southern equatorial IO. Consequently, convection is triggered and develops only in the northern TIO around Eq-10°N. The MJO initiates as convection develops south of the equator after the TCs dissipate. 
    more » « less
    Free, publicly-accessible full text available January 21, 2026