skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 21, 2026

Title: Influence of Indian Ocean Tropical Cyclones on the Development of the Madden-Julian Oscillation in December 2011
Previous studies demonstrate that the Madden-Julian Oscillation (MJO) modulates tropical cyclone (TC) activity over various locations worldwide. Since TCs are associated with anomalous large-scale circulations, they can influence the development of the MJO. However, the impact of TC on the MJO has not been thoroughly examined. This study investigates the influence of TC-associated processes on the MJO development based on the analysis of a case observed during the Dynamics of the Madden-Julian Oscillation field campaign. During the suppressed phase before the December 2011 MJO initiation, two TCs were active in the southern Tropical Indian Ocean (TIO). A dry air band within 10°S-Eq is sustained by TC-induced horizontal advection and descent, inhibiting large-scale convection in the southern equatorial IO. Consequently, convection is triggered and develops only in the northern TIO around Eq-10°N. The MJO initiates as convection develops south of the equator after the TCs dissipate.  more » « less
Award ID(s):
2421780
PAR ID:
10631363
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geophysical research letters
Volume:
52
Issue:
2
ISSN:
0094-8276
Page Range / eLocation ID:
e2024GL111502
Subject(s) / Keyword(s):
tropical cyclone MJO atmospheric circulation moisture distribution air-sea interactions convection development
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Previous studies demonstrate that the Madden‐Julian Oscillation (MJO) modulates tropical cyclone (TC) activity over various locations worldwide. Since TCs are associated with anomalous large‐scale circulations, they can influence the development of the MJO. However, the impact of TC on the MJO has not been thoroughly examined. This study investigates the influence of TC‐associated processes on the MJO development based on the analysis of a case observed during the Dynamics of the Madden‐Julian Oscillation field campaign. During the suppressed phase before the December 2011 MJO initiation, two TCs were active in the southern Tropical Indian Ocean (TIO). A dry air band within 10°S‐Eq is sustained by TC‐induced horizontal advection and descent, inhibiting large‐scale convection in the southern equatorial IO. Consequently, convection is triggered and develops only in the northern TIO around Eq‐10°N. The MJO initiates as convection develops south of the equator after the TCs dissipate. 
    more » « less
  2. One-quarter of the world’s tropical cyclones (TCs) occur in the Indian Ocean (IO) basin.The mechanisms for TC initiation in the IO are varied, but one recently discovered process involves the flow around the steep topography of Sumatra.  When the low-level flow impinges on Sumatra, it is blocked and the flow splits under typical environmental stratification.  As a result, wake vortices commonly develop at northern and southern island tips of the island. For the case of easterly flow, these circulationssubsequently move downstream over the IO.  The wake vortices emanating from the island tips are counter-rotating, but since Sumatra straddles the equator, the circulations are cyclonic in both hemispheres and thus have the potential for TC development. Using data from2.5yearsof observations from DYNAMO and YOTC, it is found that approximately 25% of the TCsthat occurred overIO basin during that periodwere initiated by Sumatra-induced wake vortices.Additional analysis of vortex statistics for the period 2008-17 has found that vortex counts are highest near Madden-Julian Oscillation (MJO) phase 1 when low-level easterlies are strongest across southern Sumatra. A secondary peak in vortex formation occurs during MJO phase 4 when low-level westerlies exist near the equator west of Sumatra. The latter finding suggests that MJO-related, low-level westerly surges on the equator impinging on Sumatracontribute to an increase in wake vortex development.  Numerical simulations have shown that circulations farther upstream such aswestern Pacific remnant TCs and the Borneo vortex can influence the development of Sumatra wake vortices and their growth into TCs over the IO. 
    more » « less
  3. Abstract The Madden–Julian oscillation (MJO) propagates eastward as a disturbance of mostly zonal wind and precipitation along the equator. The initial diagnosis of the MJO spectral peak at 40–50-day periods suggests a reduction in amplitude associated with slower MJO events that occur at lower frequencies. If events on the low-frequency side of the spectral peak continued to grow in amplitude with reduced phase speed, the spectrum would just be red. Wavelet regression analysis of slow and fast eastward-propagating MJO signals during northern winter assesses how associated moisture and wind patterns could explain why slow MJO events achieve lower amplitude in tracers of moist convection. Results suggest that slow MJO events favor a ridge anomaly over Europe, which drives cool dry air equatorward over Africa and Arabia as the active convection develops over the Indian Ocean. We hypothesize that dry air tracing back to this source, together with a longer duration of the events, leads to associated convection diminishing along the equator and instead concentrating in the Rossby gyres off the equator. Significance StatementThe Madden–Julian oscillation (MJO) dominates the subseasonal variability of the tropical atmosphere. This work suggests that it favors maximum convective activity in the 40–50-day period range because lower-frequency MJO signals tend to import more cool dry air from the extratropics and along the equator, thereby weakening the slower events. 
    more » « less
  4. Abstract During certain years, a synoptic scale vortex called the monsoon onset vortex (MOV) forms within the northward advancing zone of precipitating convection over the Arabian Sea. The MOV does not form each year and the reason is unclear. Since the Madden‐Julian Oscillation (MJO) is known to modulate convection and tropical cyclones in the tropics, we examined its role in the formation of the MOV. While the convective and transition phases of the MJO do not always lead to MOV formation, the suppressed phase of the MJO hinders the formation of the MOV more consistently. This asymmetric relationship between the MJO and MOV can be partially explained by the modulation of the large‐scale environment, measured by a tropical cyclone genesis index. It also suggests that the Arabian Sea is generally near a critical state that is favorable for MOV formation during the monsoon onset period. 
    more » « less
  5. Abstract The Madden‐Julian Oscillation (MJO) is often used for subseasonal forecasting of tropical cyclone (TC) activity. However, TC activity still has considerable variability even given the state of the MJO. This study evaluates the connection between MJO propagation speed with Atlantic TC activity and possible physical mechanisms guiding this relation. We find the Atlantic sees the highest accumulated cyclone energy (ACE) during MJO phase 2. However, the odds of above average ACE in the Atlantic is greatest during slow MJO propagation. We find that slow propagation of the MJO results in lower vertical wind shear anomalies over the Caribbean and main development region compared with typical MJO propagation. Typical MJO propagation produces an amplified height pattern and lower height anomalies along the region of the tropical upper tropospheric trough which is known to impede Atlantic TC activity. Slow MJO propagation sees weaker height anomalies over the Atlantic. 
    more » « less