skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2422542

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Enhancing our understanding of the intricate interplay among hydro‐climatic processes is crucial for a comprehensive assessment of water availability and climate extremes across global land regions. Here, we propose an integrated framework to investigate networks of the global fields of multiple hydrological variables (Precipitation, Evapotranspiration, Soil Moisture). We apply a two‐layer complex network concept to formulate the independent networks of each hydrological variable and their interactions. Intra‐ (Single‐layer) and cross‐ (two‐layer) network coefficients are derived from the formulated hydrological network to quantify the linkage, spatial connection density, and scale for the independent hydrological fields (or variables) and their interactions. The joint distribution of the intra‐network coefficients reveals multiple spatial scales of connectivity for a moderately well‐connected location in case of evapotranspiration and soil moisture. With increasing global mean temperature, spatially synchronized evapotranspiration over such a large scale may lead to multi‐continental droughts and heatwaves. Furthermore, the (cross‐) network coefficients have identified regions acting as “bottlenecks” for moisture flow and the water‐dominated areas with less evaporative actions. The contrasting features of two‐layer network coefficients have provided a qualitative picture of moisture circulation and recirculation over many hydrological hotspot regions, such as the Amazonian basin, Indian subcontinents, and the Sahel region. The derived results can be employed to gain insights into the global water cycle’s multiple interacting processes (e.g., land‐atmosphere interactions). 
    more » « less
  2. Abstract The 2022 Compound Drought and Heatwave (CDHW) caused widespread crop damage, water shortages, and wildfires across Europe. Our study analyzed this event’s severity and return period (RP) and compared it with past mega CDHWs in Europe. The hardest‐hit areas were Iberian Peninsula, France, and Italy, where temperatures exceeded 2.5°C above normal, and severe droughts persisted from May to August. Using a Bayesian approach, we estimated the RP for the 2022 CDHW event, which was unprecedented in Northern Italy, Iberian Peninsula, and western parts of France, with RPs of 354, 420, and 280 years, respectively. The reduced soil moisture due to precipitation deficits and high temperatures contributed to the persistence and severity of drought, creating a positive feedback loop where dry soils led to even drier conditions. In light of our findings, it is evident that global warming poses increased risks of severe CDHW events, which are likely to increase. 
    more » « less
  3. Free, publicly-accessible full text available October 1, 2026
  4. Free, publicly-accessible full text available March 1, 2026
  5. Compound drought and heatwave (CDHW) events have garnered increased attention due to their significant impacts on agriculture, energy, water resources, and ecosystems. We quantify the projected future shifts in CDHW characteristics (such as frequency, duration, and severity) due to continued anthropogenic warming relative to the baseline recent observed period (1982 to 2019). We combine weekly drought and heatwave information for 26 climate divisions across the globe, employing historical and projected model output from eight Coupled Model Intercomparison Project 6 GCMs and three Shared Socioeconomic Pathways. Statistically significant trends are revealed in the CDHW characteristics for both recent observed and model simulated future period (2020 to 2099). East Africa, North Australia, East North America, Central Asia, Central Europe, and Southeastern South America show the greatest increase in frequency through the late 21st century. The Southern Hemisphere displays a greater projected increase in CDHW occurrence, while the Northern Hemisphere displays a greater increase in CDHW severity. Regional warmings play a significant role in CDHW changes in most regions. These findings have implications for minimizing the impacts of extreme events and developing adaptation and mitigation policies to cope with increased risk on water, energy, and food sectors in critical geographical regions. 
    more » « less