skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2425498

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 23, 2026
  2. Free, publicly-accessible full text available June 8, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Free, publicly-accessible full text available June 1, 2026
  5. Zeroth-order fine-tuning eliminates explicit back-propagation and reduces memory overhead for large language models (LLMs), making it a promising approach for on-device fine-tuning tasks. However, existing memory-centric accelerators fail to fully leverage these benefits due to inefficiencies in balancing bit density, compute-in-memory capability, and endurance-retention trade-off. We present a reliability-aware, analog multi-level-cell (MLC) eDRAM-RRAM compute-in-memory (CIM) solution co-designed with zeroth-order optimization for language model fine-tuning. An RRAM-assisted eDRAM MLC programming scheme is developed, along with a process-voltage-temperature (PVT)-robust, large-sensing-window time-to-digital converter (TDC). The MLC-eDRAM integrating two-finger MOM provides 12× improvement in bit density over state-of-the-art MLC design. Another 5× density and 2× retention benefits are gained by adopting BEOL In2O3 FETs. 
    more » « less
    Free, publicly-accessible full text available May 18, 2026
  6. Free, publicly-accessible full text available May 1, 2026
  7. Free, publicly-accessible full text available April 21, 2026