- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000100001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Guo, Jing (2)
-
Yang, Ning (2)
-
He, Xu (1)
-
He, Yangu (1)
-
Hersam, Mark C (1)
-
Hsu, Ting-Hao (1)
-
Liu, Hefei (1)
-
Ma, Jiahui (1)
-
Qian, Justin H (1)
-
Wang, Han (1)
-
Wu, Jiangbin (1)
-
Wu, Tong (1)
-
Yan, Xiaodong (1)
-
Yang, Qimao (1)
-
Zhang, Hongming (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 23, 2026
-
Liu, Hefei; Wu, Jiangbin; Ma, Jiahui; Yan, Xiaodong; Yang, Ning; He, Xu; He, Yangu; Zhang, Hongming; Hsu, Ting-Hao; Qian, Justin H; et al (, Nature Electronics)Edge devices face challenges when implementing deep neural networks due to constraints on their computational resources and power consumption. Fuzzy logic systems can potentially provide more efficient edge implementations due to their compactness and capacity to manage uncertain data. However, their hardware realization remains difficult, primarily because implementing reconfigurable membership function generators using conventional technologies requires high circuit complexity and power consumption. Here we report a multigate van der Waals interfacial junction transistor based on a molybdenum disulfide/graphene heterostructure that can generate tunable Gaussian-like and π-shaped membership functions. By integrating these generators with peripheral circuits, we create a reconfigurable fuzzy controller hardware capable of nonlinear system control. This fuzzy logic system can also be integrated with a few-layer convolution neural network to form a fuzzy neural network with enhanced performance in image segmentation.more » « less
An official website of the United States government
