skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2426940

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 21, 2026
  2. Free, publicly-accessible full text available July 20, 2026
  3. Free, publicly-accessible full text available July 10, 2026
  4. Free, publicly-accessible full text available March 31, 2026
  5. Free, publicly-accessible full text available March 31, 2026
  6. Free, publicly-accessible full text available November 20, 2025
  7. Disaggregated memory systems achieve resource utilization efficiency and system scalability by distributing computation and memory resources into distinct pools of nodes. RDMA is an attractive solution to support high-throughput communication between different disaggregated resource pools. However, existing RDMA solutions face a dilemma: one-sided RDMA completely bypasses computation at memory nodes, but its communication takes multiple round trips; two-sided RDMA achieves one-round-trip communication but requires non-trivial computation for index lookups at memory nodes, which violates the principle of disaggregated memory. This work presents Outback, a novel indexing solution for key-value stores with a one-round-trip RDMA-based network that does not incur computation-heavy tasks at memory nodes. Outback is the first to utilize dynamic minimal perfect hashing and separates its index into two components: one memory-efficient and compute-heavy component at compute nodes and the other memory-heavy and compute-efficient component at memory nodes. We implement a prototype of Outback and evaluate its performance in a public cloud. The experimental results show that Outback achieves higher throughput than both the state-of-the-art one-sided RDMA and two-sided RDMA-based in-memory KVS by 1.06--5.03×, due to the unique strength of applying a separated perfect hashing index. 
    more » « less