State-of-the-art synchronous graph processing frameworks face both inefficiency and imbalance issues that cause their performance to be suboptimal. These issues include the inefficiency of communication and the imbalanced graph computation/communication costs in an iteration. We propose to replace their conventional two-sided communication model with the one-sided counterpart. Accordingly, we design SHMEMGraph, an efficient and balanced graph processing framework that is formulated across a global memory space and takes advantage of the flexibility and efficiency of one-sided communication for graph processing. Through an efficient one-sided communication channel, SHMEMGraph utilizes the high-performance operations with RDMA while minimizing the resource contention within a computer node. In addition, SHMEMGraph synthesizes a number of optimizations to address both computation imbalance and communication imbalance. By using a graph of 1 billion edges, our evaluation shows that compared to the state-of-the-art Gemini framework, SHMEMGraph achieves an average improvement of 35.5% in terms of job completion time for five representative graph algorithms.
more »
« less
This content will become publicly available on October 1, 2025
Outback: Fast and Communication-Efficient Index for Key-Value Store on Disaggregated Memory
Disaggregated memory systems achieve resource utilization efficiency and system scalability by distributing computation and memory resources into distinct pools of nodes. RDMA is an attractive solution to support high-throughput communication between different disaggregated resource pools. However, existing RDMA solutions face a dilemma: one-sided RDMA completely bypasses computation at memory nodes, but its communication takes multiple round trips; two-sided RDMA achieves one-round-trip communication but requires non-trivial computation for index lookups at memory nodes, which violates the principle of disaggregated memory. This work presents Outback, a novel indexing solution for key-value stores with a one-round-trip RDMA-based network that does not incur computation-heavy tasks at memory nodes. Outback is the first to utilize dynamic minimal perfect hashing and separates its index into two components: one memory-efficient and compute-heavy component at compute nodes and the other memory-heavy and compute-efficient component at memory nodes. We implement a prototype of Outback and evaluate its performance in a public cloud. The experimental results show that Outback achieves higher throughput than both the state-of-the-art one-sided RDMA and two-sided RDMA-based in-memory KVS by 1.06--5.03×, due to the unique strength of applying a separated perfect hashing index.
more »
« less
- Award ID(s):
- 1942754
- PAR ID:
- 10585756
- Publisher / Repository:
- VLDB
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 18
- Issue:
- 2
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 335 to 348
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Networkswith Remote DirectMemoryAccess (RDMA) support are becoming increasingly common. RDMA, however, offers a limited programming interface to remote memory that consists of read, write and atomic operations. With RDMA alone, completing the most basic operations on remote data structures often requires multiple round-trips over the network. Data-intensive systems strongly desire higher-level communication abstractions that supportmore complex interaction patterns. A natural candidate to consider is MPI, the de facto standard for developing high-performance applications in the HPC community. This paper critically evaluates the communication primitives of MPI and shows that using MPI in the context of a data processing system comes with its own set of insurmountable challenges. Based on this analysis, we propose a new communication abstraction named RDMO, or Remote DirectMemory Operation, that dispatches a short sequence of reads, writes and atomic operations to remote memory and executes them in a single round-trip.more » « less
-
While permissioned blockchains enable a family of data center applications, existing systems suffer from imbalanced loads across compute and memory, exacerbating the underutilization of cloud resources. This paper presents FlexChain , a novel permissioned blockchain system that addresses this challenge by physically disaggregating CPUs, DRAM, and storage devices to process different blockchain workloads efficiently. Disaggregation allows blockchain service providers to upgrade and expand hardware resources independently to support a wide range of smart contracts with diverse CPU and memory demands. Moreover, it ensures efficient resource utilization and hence prevents resource fragmentation in a data center. We have explored the design of XOV blockchain systems in a disaggregated fashion and developed a tiered key-value store that can elastically scale its memory and storage. Our design significantly speeds up the execution stage. We have also leveraged several techniques to parallelize the validation stage in FlexChain to further improve the overall blockchain performance. Our evaluation results show that FlexChain can provide independent compute and memory scalability, while incurring at most 12.8% disaggregation overhead. FlexChain achieves almost identical throughput as the state-of-the-art distributed approaches with significantly lower memory and CPU consumption for compute-intensive and memory-intensive workloads respectively.more » « less
-
Optimizing LSM-based Key-Value Stores (LSM-KVS) for disaggregated storage is essential to achieve better resource utilization, performance, and flexibility. Most of the existing studies focus on offloading the compaction to the storage nodes to mitigate the performance penalties caused by heavy network traffic between computing and storage. However, several critical issues are not addressed including the strong dependency between offloaded compaction and LSM-KVS, resource load-balancing, compaction scheduling, and complex transient errors. To address the aforementioned issues and limitations, in this paper, we propose CaaS-LSM, a novel disaggregated LSM-KVS with a new idea of Compaction-as-a-Service. CaaS-LSM brings three key contributions. First, CaaS-LSM decouples the compaction from LSM-KVS and achieves stateless execution to ensure high flexibility and avoid coordination overhead with LSM-KVS. Second, CaaS-LSM introduces a performance- and resource-optimized control plane to guarantee better performance and resource utilization via an adaptive run-time scheduling and management strategy. Third, CaaS-LSM addresses different levels of transient and execution errors via sophisticated error-handling logic. We implement the prototype of CaaS-LSM based on RocksDB and evaluate it with different LSM-based distributed databases (Kvrocks and Nebula). In the storage disaggregated setup, CaaS-LSM achieves up to 8X throughput improvement and reduces the P99 latency up to 98% compared with the conventional LSM-KVS, and up to 61% of improvement compared with state-of-the-art LSM-KVS optimized for disaggregated storage.more » « less
-
Processing-in-memory (PIM), where the compute is moved closer to the memory or the data, has been widely explored to accelerate emerging workloads. Recently, different PIM-based systems have been announced by memory vendors to minimize data movement and improve performance as well as energy efficiency. One critical component of PIM is the large amount of compute parallelism provided across many PIM nodes'' or the compute units near the memory. In this work, we provide an extensive evaluation and analysis of real PIM systems based on UPMEM PIM. We show that while there are benefits of PIM, there are also scalability challenges and limitations as the number of PIM nodes increases. In particular, we show how collective communications that are commonly found in many kernels/workloads can be problematic for PIM systems. To evaluate the impact of collective communication in PIM architectures, we provide an in-depth analysis of two workloads on the UPMEM PIM system that utilize representative common collective communication patterns -- AllReduce and All-to-All communication. Specifically, we evaluate 1) embedding tables that are commonly used in recommendation systems that require AllReduce and 2) the Number Theoretic Transform (NTT) kernel which is a critical component of Fully Homomorphic Encryption (FHE) that requires All-to-All communication. We analyze the performance benefits of these workloads and show how they can be efficiently mapped to the PIM architecture through alternative data partitioning. However, since each PIM compute unit can only access its local memory, when communication is necessary between PIM nodes (or remote data is needed), communication between the compute units must be done through the host CPU, thereby severely hampering application performance. To increase the scalability (or applicability) of PIM to future workloads, we make the case for how future PIM architectures need efficient communication or interconnection networks between the PIM nodes that require both hardware and software support.more » « less