State-of-the-art synchronous graph processing frameworks face both inefficiency and imbalance issues that cause their performance to be suboptimal. These issues include the inefficiency of communication and the imbalanced graph computation/communication costs in an iteration. We propose to replace their conventional two-sided communication model with the one-sided counterpart. Accordingly, we design SHMEMGraph, an efficient and balanced graph processing framework that is formulated across a global memory space and takes advantage of the flexibility and efficiency of one-sided communication for graph processing. Through an efficient one-sided communication channel, SHMEMGraph utilizes the high-performance operations with RDMA while minimizing the resource contention within a computer node. In addition, SHMEMGraph synthesizes a number of optimizations to address both computation imbalance and communication imbalance. By using a graph of 1 billion edges, our evaluation shows that compared to the state-of-the-art Gemini framework, SHMEMGraph achieves an average improvement of 35.5% in terms of job completion time for five representative graph algorithms.
more »
« less
Outback: Fast and Communication-Efficient Index for Key-Value Store on Disaggregated Memory
Disaggregated memory systems achieve resource utilization efficiency and system scalability by distributing computation and memory resources into distinct pools of nodes. RDMA is an attractive solution to support high-throughput communication between different disaggregated resource pools. However, existing RDMA solutions face a dilemma: one-sided RDMA completely bypasses computation at memory nodes, but its communication takes multiple round trips; two-sided RDMA achieves one-round-trip communication but requires non-trivial computation for index lookups at memory nodes, which violates the principle of disaggregated memory. This work presents Outback, a novel indexing solution for key-value stores with a one-round-trip RDMA-based network that does not incur computation-heavy tasks at memory nodes. Outback is the first to utilize dynamic minimal perfect hashing and separates its index into two components: one memory-efficient and compute-heavy component at compute nodes and the other memory-heavy and compute-efficient component at memory nodes. We implement a prototype of Outback and evaluate its performance in a public cloud. The experimental results show that Outback achieves higher throughput than both the state-of-the-art one-sided RDMA and two-sided RDMA-based in-memory KVS by 1.06--5.03×, due to the unique strength of applying a separated perfect hashing index.
more »
« less
- PAR ID:
- 10585756
- Publisher / Repository:
- VLDB
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 18
- Issue:
- 2
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 335 to 348
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Disaggregated memory architecture decouples computing and memory resources into separate pools connected via high-speed interconnect technologies, offering substantial advantages in scalability and resource utilization. However, this architecture also poses unique challenges in designing effective index structures and concurrency protocols due to increased remote memory access overhead and its shared-everything nature. In this paper, we present DART, a lock-free two-layer hashed Adaptive Radix Tree (ART) designed to minimize remote memory access while ensuring high concurrency and crash consistency in the disaggregated memory architecture. DART incorporates a hash-based Express Skip Table at its upper layer, which reduces the round trips of remote memory access during index traversal. In the base layer, DART employs an Adaptive Hashed Layout within ART nodes, confining remote memory accesses during in-node searches to small hash buckets. By further leveraging Decoupled Metadata Organization, DART achieves lock-free atomic updates, enabling high scalability and ensuring crash consistency. Our evaluation demonstrates that DART outperforms state-of-the-art counterparts by up to 5.8X in YCSB workloads.more » « less
-
Disaggregating memory from compute offers the opportunity to better utilize stranded memory in cloud data centers. It is important to cache data in the compute nodes and maintain cache coherence across multiple compute nodes. However, the limited computing power on disaggregated memory servers makes traditional cache coherence protocols suboptimal, particularly in the case of stranded memory. This paper introduces SELCC; a Shared-Exclusive Latch Cache Coherence protocol that maintains cache coherence without imposing any computational burden on the remote memory side. It aligns the state machine of the shared-exclusive latch protocol with the MSI protocol, thereby ensuring both atomicity of data access and cache coherence with sequential consistency. SELCC embeds cache-ownership metadata directly into the RDMA latch word, enabling efficient cache ownership management via RDMA atomic operations. SELCC can serve as an abstraction layer over disaggregated memory with APIs that resemble main-memory accesses. A concurrent B-tree and three transaction concurrency control algorithms are realized using SELCC's abstraction layer. Experimental results show that SELCC significantly outperforms RPC-based protocols for cache coherence under limited remote computing power. Applications on SELCC achieve comparable or superior performance over disaggregated memory compared to competitors.more » « less
-
null (Ed.)Networkswith Remote DirectMemoryAccess (RDMA) support are becoming increasingly common. RDMA, however, offers a limited programming interface to remote memory that consists of read, write and atomic operations. With RDMA alone, completing the most basic operations on remote data structures often requires multiple round-trips over the network. Data-intensive systems strongly desire higher-level communication abstractions that supportmore complex interaction patterns. A natural candidate to consider is MPI, the de facto standard for developing high-performance applications in the HPC community. This paper critically evaluates the communication primitives of MPI and shows that using MPI in the context of a data processing system comes with its own set of insurmountable challenges. Based on this analysis, we propose a new communication abstraction named RDMO, or Remote DirectMemory Operation, that dispatches a short sequence of reads, writes and atomic operations to remote memory and executes them in a single round-trip.more » « less
-
While permissioned blockchains enable a family of data center applications, existing systems suffer from imbalanced loads across compute and memory, exacerbating the underutilization of cloud resources. This paper presents FlexChain , a novel permissioned blockchain system that addresses this challenge by physically disaggregating CPUs, DRAM, and storage devices to process different blockchain workloads efficiently. Disaggregation allows blockchain service providers to upgrade and expand hardware resources independently to support a wide range of smart contracts with diverse CPU and memory demands. Moreover, it ensures efficient resource utilization and hence prevents resource fragmentation in a data center. We have explored the design of XOV blockchain systems in a disaggregated fashion and developed a tiered key-value store that can elastically scale its memory and storage. Our design significantly speeds up the execution stage. We have also leveraged several techniques to parallelize the validation stage in FlexChain to further improve the overall blockchain performance. Our evaluation results show that FlexChain can provide independent compute and memory scalability, while incurring at most 12.8% disaggregation overhead. FlexChain achieves almost identical throughput as the state-of-the-art distributed approaches with significantly lower memory and CPU consumption for compute-intensive and memory-intensive workloads respectively.more » « less
An official website of the United States government

