Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT Follow-up observations of neutrino events have been a promising method for identifying sources of very-high-energy cosmic rays. Neutrinos are unambiguous tracers of hadronic interactions and cosmic rays. On 2020 June 15, IceCube detected a neutrino event with an 82.8 per cent probability of being astrophysical in origin. To identify the astrophysical source of the neutrino, we used X-ray tiling observations to identify potential counterpart sources. We performed additional multiwavelength follow-up with NuSTAR and the VLA in order to construct a broadband spectral energy distribution (SED) of the most likely counterpart. From the SED, we calculate an estimate for the neutrinos we expect to detect from the source. While the source does not have a high predicted neutrino flux, it is still a plausible neutrino emitter. It is important to note that the other bright X-ray candidate sources consistent with the neutrino event are also radio-quiet active galactic nuclei. A statistical analysis shows that 1RXS J093117.6+033146 is the most likely counterpart (87.5 per cent) if the neutrino is cosmic in origin and if it is among X-ray detectable sources. This result adds to previous results suggesting a connection between radio-quiet AGN and IceCube neutrino events.more » « lessFree, publicly-accessible full text available July 7, 2026
- 
            Abstract For over 25 yr, the origin of long-duration gamma-ray bursts (lGRBs) has been linked to the collapse of rotating massive stars. However, we have yet to pinpoint the stellar progenitor powering these transients. Moreover, the dominant engine powering the explosions remains open to debate. Observations of both lGRBs, supernovae associated with these GRBs, such as broad-line (BL) stripped-envelope (type Ic) supernovae (hereafter, Ic-BL), supernovae (SNe), and perhaps superluminous SNe, fast blue optical transients, and fast x-ray transients, may provide clues to both engines and progenitors. In this paper, we conduct a detailed study of the tight-binary formation scenario for lGRBs, comparing this scenario to other leading progenitor models. Combining this progenitor scenario with different lGRB engines, we can compare to existing data and make predictions for future observational tests. We find that the combination of the tight-binary progenitor scenario with the black hole accretion disk engine can explain lGRBs, low-luminosity GRBs, ultra-long GRBs, and Ic-BL. We discuss the various progenitor properties required for these different subclasses and note such systems would be future gravitational-wave merger sources. We show that the current literature on other progenitor-engine scenarios cannot explain all of these transient classes with a single origin, motivating additional work. We find that the tight-binary progenitor with a magnetar engine is excluded by existing observations. The observations can be used to constrain the properties of stellar evolution, the nature of the GRB, and the associated SN engines in lGRBs and Ic-BL. We discuss the future observations needed to constrain our understanding of these rare, but powerful, explosions.more » « lessFree, publicly-accessible full text available June 17, 2026
- 
            ABSTRACT Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultrarelativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first spectroscopically confirmed afterglow with no observed high-energy emission to be identified. Serendipitously discovered during follow-up observations of a gravitational-wave trigger and located in a contemporaneous TESS sector, it is hallmarked by a fast-rising ($$t \approx 2$$ h), luminous ($$M_{\rm UV,peak} \approx -24.4$$ mag) optical transient with accompanying luminous X-ray and radio emission. No gamma-ray emission consistent with the time and location of the transient was detected by Fermi-GBM or by Konus, placing constraining limits on an accompanying GRB. We investigate several independent observational aspects of the afterglow in the context of constraints on relativistic motion and find all of them are consistent with an initial Lorentz factor of $$\Gamma _0 \approx$$ 10–30 for the on-axis material, significantly lower than in any well-observed GRB and consistent with the theoretically predicted ‘dirty fireball’ scenario in which the high-energy prompt emission is stifled by pair production. However, we cannot rule out a structured jet model in which only the line-of-sight material was ejected at low-$$\Gamma$$, off-axis from a classical high-$$\Gamma$$ jet core, and an on-axis GRB with below-average gamma-ray efficiency also remains a possibility. This event represents a milestone in orphan afterglow searches, demonstrating that luminous optical afterglows lacking detected GRB counterparts can be identified and spectroscopically confirmed in real time.more » « less
- 
            Compact objects across the mass spectrum–from neutron stars to supermassive black holes–are progenitors and/or central engines for some of the most cataclysmic phenomena in the Universe. As such, they are associated with radio emission on a variety of timescales and represent key targets for multi-messenger astronomy. Observations of transients in the radio band can unveil the physics behind their central engines, ejecta, and the properties of their surroundings, crucially complementing information on their progenitors gathered from observations of other messengers (such as gravitational waves and neutrinos). In this contribution, we summarize observational opportunities and challenges ahead in the multi-messenger study of neutron stars and black holes using radio observations. We highlight the specific contribution of current U.S. national radio facilities and discuss expectations for the field focusing on the science that could be enabled by facilities recommended by the 2020 Decadal survey such as the next generation Very Large Array (ngVLA).more » « less
- 
            The ground-based gravitational wave (GW) detectors LIGO and Virgo have enabled the birth of multi-messenger GW astronomy via the detection of GWs from merging stellar-mass black holes (BHs) and neutron stars (NSs). GW170817, the first binary NS merger detected in GWs and all bands of the electromagnetic spectrum, is an outstanding example of the impact that GW discoveries can have on multi-messenger astronomy. Yet, GW170817 is only one of the many and varied multi-messenger sources that can be unveiled using ground-based GW detectors. In this contribution, we summarize key open questions in the astrophysics of stellar-mass BHs and NSs that can be answered using current and future-generation ground-based GW detectors, and highlight the potential for new multi-messenger discoveries ahead.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
