skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Radio transients from compact objects across the mass spectrum in the era of multi-messenger astronomy
Compact objects across the mass spectrum–from neutron stars to supermassive black holes–are progenitors and/or central engines for some of the most cataclysmic phenomena in the Universe. As such, they are associated with radio emission on a variety of timescales and represent key targets for multi-messenger astronomy. Observations of transients in the radio band can unveil the physics behind their central engines, ejecta, and the properties of their surroundings, crucially complementing information on their progenitors gathered from observations of other messengers (such as gravitational waves and neutrinos). In this contribution, we summarize observational opportunities and challenges ahead in the multi-messenger study of neutron stars and black holes using radio observations. We highlight the specific contribution of current U.S. national radio facilities and discuss expectations for the field focusing on the science that could be enabled by facilities recommended by the 2020 Decadal survey such as the next generation Very Large Array (ngVLA).  more » « less
Award ID(s):
2431072
PAR ID:
10532069
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
https://www.frontiersin.org/journals/astronomy-and-space-sciences/articles/10.3389/fspas.2024.1401792/full
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
11
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ground-based gravitational wave (GW) detectors LIGO and Virgo have enabled the birth of multi-messenger GW astronomy via the detection of GWs from merging stellar-mass black holes (BHs) and neutron stars (NSs). GW170817, the first binary NS merger detected in GWs and all bands of the electromagnetic spectrum, is an outstanding example of the impact that GW discoveries can have on multi-messenger astronomy. Yet, GW170817 is only one of the many and varied multi-messenger sources that can be unveiled using ground-based GW detectors. In this contribution, we summarize key open questions in the astrophysics of stellar-mass BHs and NSs that can be answered using current and future-generation ground-based GW detectors, and highlight the potential for new multi-messenger discoveries ahead. 
    more » « less
  2. Ultraluminous X-ray sources (ULXs) were once largely believed to be powered by super-Eddington accretion onto stellar-mass black holes, although in some rare cases, ULXs also serve as potential candidates for (sub-Eddington) intermediate-mass black holes. However, a total of eight ULXs have now been confirmed to be powered by neutron stars, thanks to observed pulsations, and may act as contaminants for the radio/X-ray selection of intermediate-mass black holes. Here, we present the first comprehensive radio study of seven known neutron star ULXs using new and archival data from the Karl G. Jansky Very Large Array and the Australia Telescope Compact Array, combined with the literature. Across this sample, there is only one confident radio detection, from the Galactic neutron star ULX Swift J0243.6+6124. The other six objects in our sample are extragalactic, and only one has coincident radio emission, which we conclude is most likely contamination from a background HII region. We conclude that with current facilities, neutron star ULXs do not produce significant enough radio emission to cause them to be misidentified as radio-/X-ray-selected intermediate-mass black hole candidates. Thus, if background star formation has been properly considered, the current study indicates that a ULX with a compact radio counterpart is not likely to be a neutron star. 
    more » « less
  3. To answer NASA’s call for a sensitive X-ray observatory in the 2030s, we present the High Energy X-ray Probe (HEX-P) mission concept. HEX-P is designed to provide the required capabilities to explore current scientific questions and make new discoveries with a broadband X-ray observatory that simultaneously measures sources from 0.2 to 80 keV. HEX-P’s main scientific goals include: 1) understand the growth of supermassive black holes and how they drive galaxy evolution; 2) explore the lower mass populations of white dwarfs, neutron stars, and stellar-mass black holes in the nearby universe; 3) explain the physics of the mysterious corona, the luminous plasma close to the central engine of accreting compact objects that dominates cosmic X-ray emission; and 4) find the sources of the highest energy particles in the Galaxy. These goals motivate a sensitive, broadband X-ray observatory with imaging, spectroscopic, and timing capabilities, ensuring a versatile platform to serve a broad General Observer (GO) and Guest Investigator (GI) community. In this paper, we present an overview of these mission goals, which have been extensively discussed in a collection of more than a dozen papers that are part of this Research Topic volume. The proposed investigations will address key questions in all three science themes highlighted by Astro2020, including their associated priority areas. HEX-P will extend the capabilities of the most sensitive low- and high-energy X-ray satellites currently in orbit and will complement existing and planned high-energy, time-domain, and multi-messenger facilities in the next decade. 
    more » « less
  4. Abstract Interpreting gravitational wave observations and understanding the physics of astrophysical compact objects such as black holes or neutron stars requires accurate theoretical models. Here, we present a new numerical relativity computer program, called Nmesh , that has the design goal to become a next generation program for the simulation of challenging relativistic astrophysics problems such as binary black hole or neutron star mergers. In order to efficiently run on large supercomputers, Nmesh uses a discontinuous Galerkin method together with a domain decomposition and mesh refinement that parallelizes and scales well. In this work, we discuss the various numerical methods we use. We also present results of test problems such as the evolution of scalar waves, single black holes and neutron stars, as well as shock tubes. In addition, we introduce a new positivity limiter that allows us to stably evolve single neutron stars without an additional artificial atmosphere, or other more traditional limiters. 
    more » « less
  5. Abstract The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GWs)2and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (ther-process)3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers4–6and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7–12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic massA = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can creater-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe. 
    more » « less