skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2431552

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As electric vehicles (EVs) gradually replace fuel vehicles and provide transportation services in cities, e.g., electric taxi fleets, solar-powered charging stations with energy storage systems have been deployed to provide charging services for EV fleets. The mixture of solar-powered and traditional charging stations brings efficiency challenges to charging stations and reliability challenges to power systems. In this article, we explore e-taxis’ mobility and charging demand flexibility to co-optimize service quality of e-taxi fleets and system cost of charging infrastructures, e.g., solar power under-utilization and reliability issues of power distribution networks due to reverse power flow. We propose SAC, an e-taxi coordination framework to dispatch e-taxis for charging or serving passengers under spatial-temporal dynamics of renewable energy and passenger mobility, which integrates the renewable power generation estimation from a forecast system. Moreover, we extend our design to a stochastic Model Predictive Control problem to handle the uncertainty of solar power generation, aiming to fully utilize generated solar power. Our data-driven evaluation shows that SAC significantly outperforms existing solutions, enhancing the usage rate of solar power by up to 172.6%, while maintaining e-taxi service quality with very small overhead, i.e., reducing the supply-demand ratio by 2.2%. 
    more » « less
    Free, publicly-accessible full text available October 31, 2026
  2. Free, publicly-accessible full text available July 8, 2026
  3. Free, publicly-accessible full text available May 6, 2026