skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 31, 2026

Title: Stochastic Model Predictive Control-Based Electric Taxi Fleet Coordination under Solar Power Uncertainty
As electric vehicles (EVs) gradually replace fuel vehicles and provide transportation services in cities, e.g., electric taxi fleets, solar-powered charging stations with energy storage systems have been deployed to provide charging services for EV fleets. The mixture of solar-powered and traditional charging stations brings efficiency challenges to charging stations and reliability challenges to power systems. In this article, we explore e-taxis’ mobility and charging demand flexibility to co-optimize service quality of e-taxi fleets and system cost of charging infrastructures, e.g., solar power under-utilization and reliability issues of power distribution networks due to reverse power flow. We propose SAC, an e-taxi coordination framework to dispatch e-taxis for charging or serving passengers under spatial-temporal dynamics of renewable energy and passenger mobility, which integrates the renewable power generation estimation from a forecast system. Moreover, we extend our design to a stochastic Model Predictive Control problem to handle the uncertainty of solar power generation, aiming to fully utilize generated solar power. Our data-driven evaluation shows that SAC significantly outperforms existing solutions, enhancing the usage rate of solar power by up to 172.6%, while maintaining e-taxi service quality with very small overhead, i.e., reducing the supply-demand ratio by 2.2%.  more » « less
Award ID(s):
2431552
PAR ID:
10654009
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Cyber-Physical Systems
Volume:
9
Issue:
4
ISSN:
2378-962X
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The transition to Electric Vehicles (EVs) for reducing urban greenhouse gas emissions is hindered by the lack of public charging infrastructure, particularly fast-charging stations. Given that electric vehicle fast charging stations (EVFCS) can burden the electricity grid, it is crucial for EVFCS to adopt sustainable energy supply methods while accommodating the growing demands of EVs. Despite recent research efforts to optimize the placement of renewable-powered EV charging stations, current planning methods face challenges when applied to a complex city scale and integrating with renewable energy resources. This study thus introduces a robust decision-making model for optimal EVFCS placement planning integrated with solar power supply in a large and complex urban environment (e.g., Chicago), utilizing an advantage actor-critic (A2C) deep reinforcement learning (DRL) approach. The model balances traffic demand with energy supply, strategically placing charging stations in areas with high traffic density and solar potential. As a result, the model is used to optimally place 1,000 charging stations with a random starting search approach, achieving total reward values of 74.30 %, and estimated the capacities of potential EVFCS. This study can inform the identification of suitable locations to advance the microgrid-based charging infrastructure systems in large urban environments. 
    more » « less
  2. Charging processes are the key to promoting electric taxis and improving their operational efficiency due to frequent charging activities and long charging time. Nevertheless, optimizing charging resource allocation in real time is extremely challenging because of uneven charging demand/supply distributions, heuristic-based charging behaviors of drivers, and city-scale of the fleets. The existing solutions have utilized real-time contextual information for charging recommendation, but they do not consider the much-richer fleet information, leading to the suboptimal individual-based charging recommendation. In this paper, we design a data-driven fleet-oriented charging recommendation system for charging resource allocation called ForETaxi for electric taxis , which aims to minimize the overall charging overhead for the entire fleet, instead of individual vehicles. ForETaxi considers not only current charging requests but also possible charging requests of other nearby electric taxis in the near future by inferring their status in real time. More importantly, we implement ForETaxi with multiple types of sensor data from the Chinese Shenzhen city including GPS data, and taxi transaction data from more than 13,000 electric taxis, combined with road network data and charging station data. The data-driven evaluation results show that compared to the state-of-the-art individual-based recommendation methods, our fleet-oriented ForETaxi outperforms them by 16% in the total charging time reduction and 82% in the queuing time reduction. 
    more » « less
  3. Abstract Governments, regulatory bodies, and manufacturers are proposing plans to accelerate the adoption of electric vehicles (EVs), with the goal of reducing the impact of greenhouse gases and pollutants from internal combustion engines on human health and climate change. In this context, the paper considers a scenario where ride-sharing enterprises utilize a 100%-electrified fleet of vehicles, and seeks responses to the following key question: How can renewable-based EV charging be maximized without disrupting the quality of the ride-sharing services? We propose a new mechanism to promote EV charging during hours of high renewable generation, and we introduce the concept ofcharge request, which is issued by a power utility company. Our mechanism is inspired by a game-theoretic approach where the power utility company proposes incentives and the ride-sharing platform assigns vehicles to both ride and charge requests; the bargaining mechanism leads to prices and EV assignments that are aligned with the notion of Nash equilibria. Numerical results show that it is possible to shift the EV charging during periods of high renewable generation and adapt to intermittent generation while minimizing the impact on the quality of service. The paper also investigates how the users’ willingness to ride-share affects the charging strategy and the quality of service. 
    more » « less
  4. By displacing gasoline and diesel fuels, electric cars and fleets offer significant public health benefits by reducing emissions from the transportation sector. However, public confidence in the reliability of charging infrastructure remains a fundamental barrier to adoption. Using large-scale social data and machine learning based on 12,720 U.S. electric vehicle charging stations, we provide national evidence on how well the existing charging infrastructure is serving the needs of the expanding population of EV drivers in 651 core-based statistical areas in the United States. Contrary to predictions, we find that stations at private charging locations do not outperform public charging locations provided by government. We also find evidence of higher negative sentiment in the dense urban centers, where issues of charge rage and congestion may be the most prominent. Overall, 40% of drivers using mobility apps have faced negative experiences at EV charging stations, a problem that needs to be fixed as the market expands. 
    more » « less
  5. null (Ed.)
    This paper presents an algorithmic framework to optimize the operation of an Autonomous Mobility-on-Demand system whereby a centrally controlled fleet of electric self-driving vehicles provides on-demand mobility. In particular, we first present a mixed-integer linear program that captures the joint vehicle coordination and charge scheduling problem, accounting for the battery level of the single vehicles and the energy availability in the power grid. Second, we devise a heuristic algorithm to compute near-optimal solutions in polynomial time. Finally, we apply our algorithm to realistic case studies for Newport Beach, CA. Our results validate the near optimality of our method with respect to the global optimum, whilst suggesting that through vehicle-to-grid operation we can enable a 100% penetration of renewable energy sources and still provide a high-quality mobility service. 
    more » « less