skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2501206

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sediment dynamics are fundamental to understanding coastal resiliency to climate change in the coming decades. Tropical cyclones can radically alter shallow sediment properties; however, the uncertain and destructive nature of tropical cyclones make understanding and predicting their impacts on sediments challenging. Here, grain size sampling in conjunction with continuous hydrodynamic data provided an unprecedented perspective of the impacts of two tropical cyclones, including Hurricane Sally (2020), in which the inner core of the storm passed directly over the field sites, on shallow coastal sediments in Alabama (USA). Sampling directly before and after Sally as well as out to ∼7 months after the second storm event, Hurricane Zeta, showed that the changes in sediments following storm events exhibited notable site‐to‐site variability. This variability during the first storm event was consistent with low sand supply and flow interactions driven by local bathymetry that led to sand transport and deposition at some previously‐muddy sites, near‐surface mud loss at some sandy sites, or little change at others. Post‐Sally impacts to grain size were well preserved 8 months after the storm, despite passage of Zeta as well as seasonal winds and riverine inputs during winter and spring. Overall, high temporal‐resolution sampling over a relatively large area (<500 km2) revealed relatively small‐scale spatial variability (on the order of 5–10 km) of hurricane impacts to sediment structure. These observations demonstrate a critical limitation for accurately predicting changes to coastal sediment dynamics in the face of a changing climate and its impact on tropical cyclones. 
    more » « less
  2. This data set includes data and scripts from a field study examining the effect of diel oxygen cycling on faunal activity, and in turn sediment oxygen demand. The field experiment used in situ flow-through benthic chambers to measure oxygen consumption, as described in the methods paper Gadeken et al 2023 in L&O:Methods. The chambers were deployed and retrieved in three ~24 hour deployments in a shallow subtidal area of Bon Secour Bay in Mobile Bay, AL, in August 2021. Included in this data set are the raw data files of oxygen and temperature measurements from Onset HOBO DO loggers integrated into the benthic chamber system, annotated MATLAB scripts and workspaces detailing data processing and analysis, and faunal community data from the benthic chambers. 
    more » « less
  3. This dataset is part of a field study examining the effect of diel oxygen cycling on faunal activity, and in turn sediment oxygen demand. The field experiment used in situ flow-through benthic chambers to measure oxygen consumption. The chambers were deployed and retrieved in three ~24 hour deployments in a shallow subtidal area of Bon Secour Bay in Mobile Bay, AL, in August 2021. This dataset contains the abundances of all macrofaunal taxa as well as the total biomass and the biomass of some major taxa found in each of the chambers. The Abunance data have not been normalized to meters squared. The biomass values have been normalized to meters squared from the values taken from the chambers, which occupy a smaller area. 
    more » « less
  4. This dataset is part of a field study examining the effect of diel oxygen cycling on faunal activity, and in turn sediment oxygen demand. The field experiment used in situ flow-through benthic chambers to measure oxygen consumption, as described in the methods paper Gadeken et al 2023. The chambers were deployed and retrieved in three ~24 hour deployments in a shallow subtidal area of Bon Secour Bay in Mobile Bay, AL, in August 2021. This dataset contains streamlined data from the HOBO dissolved oxygen (DO) loggers and the log time of when the chamber system flushes the overlying water in the chamber and starts a new incubation. 
    more » « less
  5. This dataset is part of a field study examining the effect of diel oxygen cycling on faunal activity, and in turn sediment oxygen demand. The field experiment used in situ flow-through benthic chambers to measure oxygen consumption, as described in the methods paper Gadeken et al 2023. The chambers were deployed and retrieved in three ~24 hour deployments in a shallow subtidal area of Bon Secour Bay in Mobile Bay, AL, in August 2021. This dataset contains sediment characteristic information from three cores taken within 10m of the deployment location. 
    more » « less
  6. This dataset consists of infaunal community composition and sediment grain size distribution, porosity, and organic content of sediment cores in addition to bottom water salinity, dissolved oxygen, and temperature collected from 9 sites at 5, 12 and 20 meters depth in the Northern Gulf of Mexico off the Alabama (USA) coast before and after Hurricane Sally, which occurred in 2020. 
    more » « less
  7. This dataset consists of profiles of sediment grain size distribution, porosity, and organic content in addition to bottom water salinity and temperature collected from 9 sites at 5, 12 and 20 meters depth in the Northern Gulf of Mexico off the Alabama (USA) coast before and after Hurricane Sally (2020). 
    more » « less