skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2516767

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development of digital instruments for mental health monitoring using biosensor data from wearable devices can enable remote, longitudinal, and objective quantitative benchmarks. To survey developments and trends in this field, we conducted a systematic review of artificial intelligence (AI) models using data from wearable biosensors to predict mental health conditions and symptoms. Following PRISMA guidelines, we identified 48 studies using a variety of wearable and smartphone biosensors including heart rate, heart rate variability (HRV), electrodermal activity/galvanic skin response (EDA/GSR), and digital proxies for biosignals such as accelerometry, location, audio, and usage metadata. We observed several technical and methodological challenges across studies in this field, including lack of ecological validity, data heterogeneity, small sample sizes, and battery drainage issues. We outline several corresponding opportunities for advancement in the field of AI-driven biosensing for mental health. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Substance use disorders affect 17.3% of Americans. Digital health solutions that use machine learning to detect substance use from wearable biosignal data can eventually pave the way for real-time digital interventions. However, difficulties in addressing severe between-subject data heterogeneity have hampered the adaptation of machine learning approaches for substance use detection, necessitating more robust technological solutions. We tested the utility of personalized machine learning using participant-specific convolutional neural networks (CNNs) enhanced with self-supervised learning (SSL) to detect drug use. In a pilot feasibility study, we collected data from 9 participants using Fitbit Charge 5 devices, supplemented by ecological momentary assessments to collect real-time labels of substance use. We implemented a baseline 1D-CNN model with traditional supervised learning and an experimental SSL-enhanced model to improve individualized feature extraction under limited label conditions. Results: Among the 9 participants, we achieved an average area under the receiver operating characteristic curve score across participants of 0.695 for the supervised CNNs and 0.729 for the SSL models. Strategic selection of an optimal threshold enabled us to optimize either sensitivity or specificity while maintaining reasonable performance for the other metric. Conclusion: These findings suggest that Fitbit data have the potential to enhance substance use monitoring systems. However, the small sample size in this study limits its generalizability to diverse populations, so we call for future research that explores SSL-powered personalization at a larger scale. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Background: Machine learning models often use passively recorded sensor data streams as inputs to train machine learning models that predict outcomes captured through ecological momentary assessments (EMA). Despite the growth of mobile data collection, challenges in obtaining proper authorization to send notifications, receive background events, and perform background tasks persist. Objective: We investigated challenges faced by mobile sensing apps in real-world settings in order to develop design guidelines. For active data, we compared 2 prompting strategies: setup prompting, where the app requests authorization during its initial run, and contextual prompting, where authorization is requested when an event or notification occurs. Additionally, we evaluated 2 passive data collection paradigms: collection during scheduled background tasks and persistent reminders that trigger passive data collection. We investigated the following research questions (RQs): (RQ1) how do setup prompting and contextual prompting affect scheduled notification delivery and the response rate of notification-initiated EMA? (RQ2) Which authorization paradigm, setup or contextual prompting, is more successful in leading users to grant authorization to receive background events? and (RQ3) Which polling-based method, persistent reminders or scheduled background tasks, completes more background sessions?. Methods: We developed mobile sensing apps for iOS and Android devices and tested them through a 30-day user study asking college students (n=145) about their stress levels. Participants responded to a daily EMA question to test active data collection. The sensing apps collected background location events, polled for passive data with persistent reminders, and scheduled background tasks to test passive data collection.Results: For RQ1, setup and contextual prompting yielded no significant difference (ANOVA F1,144=0.0227; P=.88) in EMA compliance, with an average of 23.4 (SD 7.36) out of 30 assessments completed. However, qualitative analysis revealed that contextual prompting on iOS devices resulted in inconsistent notification deliveries. For RQ2, contextual prompting for background events was 55.5% (χ21=4.4; P=.04) more effective in gaining authorization. For RQ3, users demonstrated resistance to installing the persistent reminder, but when installed, the persistent reminder performed 226.5% more background sessions than traditional background tasks. Conclusions: We developed design guidelines for improving mobile sensing on consumer mobile devices based on our qualitative and quantitative results. Our qualitative results demonstrated that contextual prompts on iOS devices resulted in inconsistent notification deliveries, unlike setup prompting on Android devices. We therefore recommend using setup prompting for EMA when possible. We found that contextual prompting is more efficient for authorizing background events. We therefore recommend using contextual prompting for passive sensing. Finally, we conclude that developing a persistent reminder and requiring participants to install it provides an additional way to poll for sensor and user data and could improve data collection to support adaptive interventions powered by machine learning. 
    more » « less