skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2528103

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The global health threat posed by the Monkeypox virus (Mpox) requires swift, simple, and accurate detection methods for effective management, emphasizing the growing necessity for decentralized point-of-care (POC) diagnostic solutions. The clustered regularly interspaced short palindromic repeats (CRISPR), initially known for its effective nucleic acid detection abilities, presents itself as an attractive diagnostic strategy. CRISPR offers exceptional sensitivity, single-base specificity, and programmability. Here, we reviewed the latest developments in CRISPR-based POC devices and testing strategies for Mpox detection. We explored the crucial role of genetic sequencing in designing crRNA for CRISPR reaction and understanding Mpox transmission and mutations. Additionally, we showed the integration of CRISPR-Cas12 strategy with pre-amplification and amplification-free methods. Our study also focused on the significant role of Cas12 proteins and the effectiveness of Cas12 coupled with recombinase polymerase amplification (RPA) for Mpox detection. We envision the future prospects and challenges, positioning CRISPR-Cas12-based POC devices as a frontrunner in the next generation of molecular biosensing technologies. 
    more » « less
  2. Abstract MicroRNA (miRNA), crucial non‐coding RNAs, have emerged as key biomarkers in molecular diagnostics, prognosis, and personalized medicine due to their significant role in gene expression regulation. Salivary miRNA, in particular, stands out for its non‐invasive collection method and ease of accessibility, offering promising avenues for the development of point‐of‐care diagnostics for a spectrum of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Such development promises rapid and precise diagnosis, enabling timely treatment. Despite significant advancements in salivary miRNA‐based testing, challenges persist in the quantification, multiplexing, sensitivity, and specificity, particularly for miRNA at low concentrations in complex biological mixtures. This work delves into these challenges, focusing on the development and application of salivary miRNA tests for point‐of‐care use. We explore the biogenesis of salivary miRNA and analyze their quantitative expression and their disease relevance in cancer, infection, and neurodegenerative disorders. We also examined recent progress in miRNA extraction, amplification, and multiplexed detection methods. This study offers a comprehensive view of the development of salivary miRNA‐based point‐of‐care testing (POCT). Its successful advancement could revolutionize the early detection, monitoring, and management of various conditions, enhancing healthcare outcomes. This article is categorized under:Diagnostic Tools > BiosensingDiagnostic Tools > Diagnostic Nanodevices 
    more » « less
  3. Free, publicly-accessible full text available April 3, 2026
  4. Free, publicly-accessible full text available March 10, 2026
  5. In developing solid-state nanopore sensors for single molecule detection, comprehensive evaluation of the nanopore quality is important. Existing studies typically rely on comparing the noise root mean square or power spectrum density values. Nanopores exhibiting lower noise values are generally considered superior. This evaluation is valid when the single molecule signal remains consistent. However, the signal can vary, as it is strongly related to the solid-state nanopore size, which is hard to control during fabrication consistently. This work emphasized the need to report the baseline current for evaluating solid-state nanopore sensors. The baseline current offers insight into several experimental conditions, particularly the nanopore size. Our experiments show that a nanopore sensor with more noise is not necessarily worse when considering the signal-to-noise ratio (SNR), particularly when the pore size is smaller. Our findings suggest that relying only on noise comparisons can lead to inaccurate evaluations of solid-state nanopore sensors, considering the inherent variability in fabrication and testing setups among labs and measurements. We propose that future studies should include reporting baseline current and sensing conditions. Additionally, using SNR as a primary evaluation tool for nanopore sensors could provide a more comprehensive understanding of their performance. 
    more » « less
  6. ProMagBot introduces scalable electromagnetic control of magnetic beads. The device is a handheld, battery-powered, and field-deployable sample preparation device that can extract viral RNA from plasma samples in under 20 minutes. 
    more » « less