skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2532217

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Accurate prediction of tropical cyclone (TC) intensity remains a significant challenge partially due to physics deficiencies in forecast models. Improvement of boundary layer physics in the turbulent “gray zone” requires a better understanding of spatiotemporal variations of turbulent properties in low-level high-wind regions. To fill the gap, this study utilizes Anduril’s Altius 600, a small uncrewed aircraft system (sUAS), that collected data in the eye and eyewall regions of category 5 Hurricane Ian (2022) at altitudes below 1.4 km. The highest observed wind speed (WSPD) exceeded 105 m s−1at 650-m altitude. The Altius measured turbulent kinetic energy (TKE) and momentum fluxes that were in good agreement with previous crewed aircraft observations. This study explores the scale-awareness turbulent structure by quantifying turbulence-scale (100 m–2 km) and mesoscale (2–10 km) contributions to the total flux and TKE. The results show that mesoscale eddies dominate the horizontal wind variances compared to turbulent eddies. The horizontal wind variances contribute 70%–90% of the total TKE, while the vertical wind variances contribute 10%–30% of the total TKE. Spectral and wavelet analyses demonstrate eddy scales from a few hundred meters up to 10 km, with unique distributions depending on where observations were taken (e.g., eye vs eyewall). These findings underscore the complex and multiscale nature of TKE and momentum fluxes in intense hurricanes and highlight the critical need for advanced observational tools within the high-wind hurricane boundary layer environment. Significance StatementIt is crucial to improve the understanding of turbulent processes in the low-level high-wind regions of tropical cyclones (TCs) for accurate intensity forecasts. Traditional data collection methods involving crewed aircraft are too risky to access these critical regions. This study demonstrates the use of a small uncrewed aircraft system (sUAS) to collect data at low levels within an intense Hurricane Ian (2022). The wind speed measured by the sUAS exceeded 105 m s−1. Important turbulence parameters are estimated and presented as a function of wind speed, height, and radial locations. We found that mesoscale (2–10 km) eddies contributed to a significant portion of the total momentum transfer relative to turbulence-scale (100 m–2 km) eddies. This work demonstrates the usefulness of sUASs for improving the basic understanding of key physical processes in the high-wind hurricane boundary layer. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract Convective cold pools (CPs) are inherent to mesoscale convective systems and have been identified in tropical cyclone (TC) eyewalls and rainbands. However, their distribution within TCs and their impacts on the TC enthalpy balance are not well understood. This gap is due to the scarcity of high-frequency observations over the ocean. By comparing 1-min data from Saildrone uncrewed surface vehicles to 10-min ocean moored buoy data, we demonstrate that the latter can detect CPs effectively. The analysis of the combined mooring-Saildrone dataset, associated with 241 TCs in the North Atlantic over the period 1998–2023, reveals that the frequencies of occurrence of CPs in the motion-right and shear-left quadrants are 50% and 30% higher than in the motion-left and shear-right quadrants, respectively. This indicates that there is enhanced convection in the motion-right and shear-left quadrants, and TC motion is more important than vertical wind shear in organizing CPs. Although, on average, CPs occur only about 6% of the time in TCs, their contribution to tropospheric latent heat release from their uplifting effect could be comparable to the total surface enthalpy flux in TCs under non-CP conditions. In addition, we found that CP gust fronts can boost surface sensible and latent heat fluxes by 65% and 11%, respectively, which can help low-enthalpy downdraft boundary air recover more quickly, increasing the readiness of the boundary layer for new convection under TC conditions. These findings suggest that properly resolving CP dynamics in TC models could improve the accuracy of TC intensity forecasts. Significance StatementConvective cold pools are bursts of cool, dry air near the surface, often originating from thunderstorms. As they travel, they uplift surface moist air to higher altitudes, which helps form new thunderstorms. As thunderstorms are an integral part of tropical cyclones, the purpose of this study is to investigate the distribution of cold pools inside tropical cyclones and how much they impact tropical cyclone energy. We found that cold pools are more common on the right side of tropical cyclone paths, suggesting stronger thunderstorms in that part of the storm. Despite a low frequency of occurrence of 6%, the amount of energy contributed by cold pools’ uplifting effect in a hurricane can match the total energy released by that hurricane. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Abstract Cyclostrophic rotation in the core region of tropical cyclones (TCs) imprints a distinct signature upon their turbulence structure. Its intensity is characterized by the radius of maximum wind, , and the azimuthal wind velocity at that radius, . The corresponding cyclostrophic Coriolis parameter, /, far exceeds its planetary counterpart, , for all storms; its impact increases with storm intensity. The vortex can be thought of as a system undergoing a superposition of planetary and cyclostrophic rotations represented by the effective Coriolis parameter, . On the vortex periphery, merges with . In the classical Rankine vortex model, the inner region undergoes solid‐body rotation rendering constant. In a more realistic representation, is not constant, and the ensuing cyclostrophic ‐effect sustains vortex Rossby waves. Horizontal turbulence in such a system can be quantified by a two‐dimensional anisotropic spectrum. An alternative description is provided by one‐dimensional, longitudinal, and transverse spectra computed along the radial direction. For rotating turbulence with vortex Rossby waves, the spectra divulge a coexistence of three ranges: Kolmogorov, peristrophic (spectral amplitudes are proportional to ), and zonostrophic (transverse spectrum amplitude is proportional to ). A comprehensive database of TC winds collected by reconnaissance airplanes reveals that with increasing storm intensity, their cyclostrophic turbulence evolves from purely peristrophic to mixed peristrophic‐zonostrophic to predominantly zonostrophic. The latter is akin to the flow regime harboring zonal jets on fast rotating giant planets. The eyewall of TCs is an equivalent of an eastward zonal jet. 
    more » « less