skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Graves, James Bryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Li, Yingzhen; Mandt, Stephan; Agrawal, Shipra; Khan, Emtiyaz (Ed.)
    Optimization problems with norm-bounding constraints appear in various applications, from portfolio optimization to machine learning, feature selection, and beyond. A widely used variant of these problems relaxes the norm-bounding constraint through Lagrangian relaxation and moves it to the objective function as a form of penalty or regularization term. A challenging class of these models uses the zero-norm function to induce sparsity in statistical parameter estimation models. Most existing exact solution methods for these problems use additional binary variables together with artificial bounds on variables to formulate them as a mixed-integer program in a higher dimension, which is then solved by off-the-shelf solvers. Other exact methods utilize specific structural properties of the objective function to solve certain variants of these problems, making them non-generalizable to other problems with different structures. An alternative approach employs nonconvex penalties with desirable statistical properties, which are solved using heuristic or local methods due to the structural complexity of those terms. In this paper, we develop a novel graph-based method to globally solve optimization problems that contain a generalization of norm-bounding constraints. This includes standard ℓp-norms for p∈[0,∞) as well as nonconvex penalty terms, such as SCAD and MCP, as special cases. Our method uses decision diagrams to build strong convex relaxations for these constraints in the original space of variables without the need to introduce additional auxiliary variables or impose artificial variable bounds. We show that the resulting convexification method, when incorporated into a spatial branch-and-cut framework, converges to the global optimal value of the problem. To demonstrate the capabilities of the proposed framework, we conduct preliminary computational experiments on benchmark sparse linear regression problems with challenging nonconvex penalty terms that cannot be modeled or solved by existing global solvers. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. It is well-known that the McCormick relaxation for the bilinear constraint z = xy gives the convex hull over the box domains for x and y. In network applications where the domain of bilinear variables is described by a network polytope, the McCormick relaxation, also referred to as linearization, fails to provide the convex hull and often leads to poor dual bounds. We study the convex hull of the set containing bilinear constraints [Formula: see text] where xirepresents the arc-flow variable in a network polytope, and yjis in a simplex. For the case where the simplex contains a single y variable, we introduce a systematic procedure to obtain the convex hull of the above set in the original space of variables, and show that all facet-defining inequalities of the convex hull can be obtained explicitly through identifying a special tree structure in the underlying network. For the generalization where the simplex contains multiple y variables, we design a constructive procedure to obtain an important class of facet-defining inequalities for the convex hull of the underlying bilinear set that is characterized by a special forest structure in the underlying network. Computational experiments conducted on different applications show the effectiveness of the proposed methods in improving the dual bounds obtained from alternative techniques. Funding: This work was supported by Air Force Office of Scientific Research [Grant FA9550-23-1-0183]; National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation [Grant 2338641]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0001 . 
    more » « less