Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Herein we document and interpret an absolute chronological dating attempt using geomagnetic paleointensity data from a post-glacial sediment drape on the western Antarctic Peninsula continental shelf. Our results demonstrate that absolute dating can be established in Holocene Antarctic shelf sediments that lack suitable material for radiocarbon dating. Two jumbo piston cores of 10-m length were collected in the Western Bransfield Basin. The cores preserve a strong, stable remanent magnetization and meet the magnetic mineral assemblage criteria recommended for reliable paleointensity analyses. The relative paleomagnetic intensity records were tuned to published absolute and relative paleomagnetic stacks, which yielded a record of the last ∼8500 years for the post-glacial drape. Four tephra layers associated with documented eruptions of nearby Deception Island have been dated at 3.31, 3.73, 4.44, and 6.86 ± 0.07 ka using the geomagnetic paleointensity method. This study establishes the dual role of geomagnetic paleointensity and tephrochronology in marine sediments across both sides of the northern Antarctic Peninsula.more » « less
-
Palmer Deep sediment cores are used to produce the first high-resolution, continuous late Pleistocene to Holocene time-series from the Antarctic marine system. The sedimentary record is dated using accelerator mass spectrometer radiocarbon methods on acid insoluble organic matter and foraminiferal calcite. Fifty-four radiocarbon analyses are utilized in the dating which provides a calibrated timescale back to 13 ka BP. Reliability of resultant ages on organic matter is assured because duplicates produce a standard deviation from the surface age of less than laboratory error (i.e., ±50 years). In addition, surface organic matter ages at the site are in excellent agreement with living calcite ages at the accepted reservoir age of 1260 years for the Antarctic Peninsula. Spectral analyses of the magnetic susceptibility record against the age model reveal unusually strong periodicity in the 400,–200 and 50-70 year frequency bands, similar to other high-resolution records from the Holocene but, so far, unique for the circum-Antarctic. Here we show that comparison to icecore records of specific climatic events (e.g., the ’Little Ice Age‘, Neoglacial, Hypsithermal, and the Bølling/Allerød to Younger Dryas transition) provides improved focus upon the relative timing of atmosphere/ocean changes between the northern anid southern high latitudes.more » « less
An official website of the United States government
