Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a task-oriented evaluation methodology for edge detectors. Performance is measured based on the task of structure from motion. Eighteen real image sequences from 2 different scenes varying in the complexity and scenery types are used. The task-level ground truth for each image sequence is manually specified in terms of the 3D motion and structure. An automated tool computes the accuracy of the motion and structure achieved using the set of edge maps. Parameter sensitivity and execution speed are also analyzed. Four edge detectors are compared. All implementations and data sets are publicly available.more » « less
-
We present a method for 3D non-rigid motion tracking and structure reconstruction from 2D points and curve segments from a sequence of perspective images. The 3D locations of features in the first frame are known. The 3D affine motion model is used to describe the nonrigid motion. The results from synthetic and real data are presented. The applications include: lip tracking, MPEG4 face player, and burn scar assessment. The results show that: 1) curve segments are more robust under noise (observed from synthetic data with different Gaussian noise level); and 2) using both feature yields a significant performance gain in real data.more » « less
-
In our previous work, we used finite element models to determine nonrigid motion parameters and recover unknown local properties of objects given correspondence data recovered with snakes or other tracking models. In this paper, we present a novel multiscale approach to recovery of nonrigid motion from sequences of registered intensity and range images. The main idea of our approach is that a finite element (FEM) model incorporating material properties of the object can naturally handle both registration and deformation modeling using a single model-driving strategy. The method includes a multiscale iterative algorithm based on analysis of the undirected Hausdorff distance to recover correspondences. The method is evaluated with respect to speed and accuracy. Noise sensitivity issues are addressed. Advantages of the proposed approach are demonstrated using man-made elastic materials and human skin motion. Experiments with regular grid features are used for performance comparison with a conventional approach (separate snakes and FEM models). It is shown, however, that the new method does not require a sampling/correspondence template and can adapt the model to available object features. Usefulness of the method is presented not only in the context of tracking and motion analysis, but also for a burn scar detection application.more » « less
-
We present a methodology for calibrating multiple light source locations in 3D from images. The procedure involves the use of a novel calibration object that consists of three spheres at known relative positions. The process uses intensity images to find the positions of the light sources. We conducted experiments to locate light sources in 51 different positions in a laboratory setting. Our data shows that the vector from a point in the scene to a light source can be measured to within 2.7/spl plusmn/4/spl deg/ at /spl alpha/=.05 (6 percent relative) of its true direction and within 0.13/spl plusmn/.02 m at /spl alpha/=.05 (9 percent relative) of its true magnitude compared to empirically measured ground truth. Finally, we demonstrate how light source information is used for color correction.more » « less
-
In this paper we present a novel multiscale approach to recovery of nonrigid motion from sequences of registered intensity and range images. The main idea of our approach is that a finite element (FEM) model can naturally handle both registration and deformation modeling using a single model-driving strategy. The method includes a multiscale iterative algorithm based on analysis of the undirected Hausdorff distance to recover correspondences. The method is evaluated with respect to speed, accuracy, and noise sensitivity. Advantages of the proposed approach are demonstrated using man-made elastic materials and human skin motion. Experiments with regular grid features are used for performance comparison with a conventional approach (separate snakes and FEM models). It is shown that the new method does not require a grid and can adapt the model to available object features.more » « less
-
In this paper we propose a method for increasing precision and reliability of elasticity analysis in complicated burn scar cases. The need for a technique that would help physicians by objectively assessing elastic properties of scars, motivated our original algorithm. This algorithm successfully employed active contours for tracking and finite element models for strain analysis. However, the previous approach considered only one normal area and one abnormal area within the region of interest, and scar shapes which were somewhat simplified. Most burn scars have rather complicated shapes and may include multiple regions with different elastic properties. Hence, we need a method capable of adequately addressing these characteristics. The new method can split the region into more than two localities with different material properties, select and quantify abnormal areas, and apply different forces if it is necessary for a better shape description of the scar. The method also demonstrates the application of scale and mesh refinement techniques in this important domain. It is accomplished by increasing the number of Finite Element Method (FEM) areas as well as the number of elements within the area. The method is successfully applied to elastic materials and real burn scar cases. We demonstrate all of the proposed techniques and investigate the behavior of elasticity function in a 3-D space. Recovered properties of elastic materials are compared with those obtained by a conventional mechanics-based approach. Scar ratings achieved with the method are correlated against the judgments of physicians.more » « less
An official website of the United States government
